
BioFNet: biological functional network
database for analysis and synthesis of
biological systems
Hiroyuki Kurata, Kazuhiro Maeda, Toshikazu Onaka and Takenori Takata
Submitted: 20th April 2013; Received (in revised form): 6th June 2013

Abstract
In synthetic biology and systems biology, a bottom-up approach can be used to construct a complex, modular,
hierarchical structure of biological networks. To analyze or design such networks, it is critical to understand the
relationship between network structure and function, the mechanism through which biological parts or biomol-
ecules are assembled into building blocks or functional networks. A functional network is defined as a subnetwork
of biomolecules that performs a particular function. Understanding the mechanism of building functional networks
would help develop a methodology for analyzing the structure of large-scale networks and design a robust biological
circuit to perform a target function.We propose a biological functional network database, named BioFNet, which
can cover the whole cell at the level of molecular interactions. The BioFNet takes an advantage in implementing
the simulation program for the mathematical models of the functional networks, visualizing the simulated results.
It presents a sound basis for rational design of biochemical networks and for understanding how functional
networks are assembled to create complex high-level functions, which would reveal design principles underlying
molecular architectures.
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INTRODUCTION
The goals of systems biology and synthetic biology

are to reveal the mechanisms of how large-scale

complex biochemical networks generate responses

to environmental stresses, stochastic fluctuations or

genetic variations and to enable rational design of

such networks for engineering purposes [1–5]. The

biochemical network is a sound basis for a bottom-

up approach to dynamic modeling for system analysis

and rational design [6]. A number of dynamic

models, from networks of a few components to

whole-cell models with hundreds of components,

have been constructed in a wide range of species

from microbes to mammals [7].

It is difficult to understand the entire biochemical

network of a cell because it is too large and compli-

cated. An alternative method would be to decom-

pose the whole network into subnetworks called

‘building blocks’ [8] in terms of topology or regula-

tory architecture and to simulate and analyze their

associated mathematical models. The system is

regarded as the hierarchical assembly of these subnet-

works [9–11]. Biological parts or biomolecules [12]

are assembled into building blocks, including net-

work motifs [13]. These building blocks are com-

bined to generate a complex high-level function.

This synthetic approach is analogous to the standard

strategy of engineering systems with a scalable
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hierarchical modular structure, where a set of off-

the-shelf parts with operation specifications can be

combined.

To analyze or design a biochemical network, it is

critical to understand a variety of relationships be-

tween network structure and function (RNFs) [14],

the mechanism by which biomolecules are assembled

to form a functional network [15]. In this review, the

functional network is defined as the subnetwork of

biomolecules required to generate a particular func-

tion. An understanding of the RNFs of the func-

tional network provides an analytical methodology

for the structure of a large-scale network and rational

guidance for how to design a robust biological circuit

to carry out a target function.

Identifying network motifs has helped to illustrate

fundamental building blocks and elementary networks

[9, 16–18]. While it may be difficult to rigorously

define the elementary network, it can be regarded as

the minimal or small subnetwork responsible for

specific biological functions such as ultrasensitive re-

sponse, homeostasis, amplification, adaptation, noise

filtration, pulse generation, oscillation and bistability.

Note that elementary networks are a part of functional

networks. As with LEGO blocks, elementary net-

works can be assembled into a hierarchy to synthesize

a large-scale network for complex function.

To find elementary networks, exhaustive compu-

tational searches and theoretical analyses have been

used to explore the full design space of 2- or 3-gene

networks to enumerate every possible unique top-

ology that is capable of executing a specific function

[9, 19–21]. Although elementary networks are likely

to have more than three nodes, many can be reduced

to simpler 2- or 3-gene networks or low-resolution

networks, assuming that multiple molecules often

function in concert as a single virtual component

[15, 22]. This sacrifice in resolution enables the ex-

haustive search of the full design space. Automatic

modeling by combination of biomolecules has been

proposed [22–25]. In this method, biomolecules are

combined in silico to search the wide space of kinetic

parameters to achieve a target function. A parameter-

free method of chemical reaction network theory

was presented to characterize the bistability function

of enzyme reaction and gene regulatory networks

[22, 26].

The RNFs of functional networks such as

chemotaxis [22, 27–29], MAP kinase [22, 30],

two-component signaling systems [22, 31, 32] and

morphogen gradient-induced pattern formation [22,

33–36] have been described in detail. Those individ-

ual studies that focus on details of biochemistry and

kinetics are effective at identifying the RNFs that

coarse computational searches may miss.

These approaches have identified or suggested a

vast number of RNFs, but they have not synthesized

into a comprehensive model, despite their import-

ance in systems and synthetic biology. To intelligibly

illustrate the RNFs, we have developed the biolo-

gical functional network database named BioFNet

that has the capacity to cover the whole cell at the

level of molecular interactions. To facilitate under-

standing of the RNFs, we interpret them in the con-

text of engineering control systems. BioFNet takes

advantage of a simulation program for mathematical

models of functional networks, visualizing the simu-

lated results. It provides a sound basis for rational

design and engineering of biochemical networks

and for an understanding of how functional net-

works are assembled to perform a complex high-

level function, revealing the design principles

underlying molecular architectures.

NETWORKS
A machine can be separated into modules and parts

in a hierarchical manner. The parts are assembled to

make basic functional modules such as power supply,

sensor, actuator and controller, which are further

assembled to form a complete system. Analogous

to the machine, the biochemical network of a cell

can be decomposed into biomolecules, elementary

networks and combined networks, as shown in

Figure 1. Biomolecules correspond to biological

parts. The function of a biomolecule can be illu-

strated by the regulator and reactions [22, 24, 37, 38].

Figure 1: Hierarchical structure of biomolecules,
elementary networks and combined networks.
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Biomolecules are assembled to form the fundamental

building blocks or elementary networks. The elem-

entary network, which includes network motifs such

as feedforward loops (FFL), autoregulation, a single

input module and a dense overlapping regulon

[13, 22], is regarded as the small- or minimal-scale

network that consists of a few interacting biomol-

ecules and is responsible for generating particular

functions such as sigmoid response, amplification,

adaptation, bistability and oscillation. The elemen-

tary networks are assembled into a combined net-

work to perform a complex function. For example,

superposition of the FFL with OR logic produces a

First In First Out (FIFO) function [22, 39] (ID128 in

the database) (Figure 2). The combination number of

elementary networks and biomolecules is extremely

large, suggesting many potential functions. Note that

the elementary networks and combined networks

are a part of the functional networks (Figure 1).

DATABASE
To register the functional networks in an intelligent

manner, we develop the BioFNet (Figure 3), where

each functional network is characterized as shown in

Figure 4. It enables keyword searching with biolo-

gical and engineering terms (http://kurata22.bio.

kyutech.ac.jp/db/pub/pub_main.php?Ver¼3.4).

Figure 3A shows the search panel where key words

are input and the output panel where search results

appear. Figure 3B shows the record of the selected

functional networks. Figure 3C shows the calcula-

tion tool that simulates a mathematical model and

visualizes the simulated results while changing the

values of critical parameters. At present 181 records

are registered. The instruction is provided by

Supplementary data 1. The architecture of the

BioFNet is shown in Figure 5. Its outstanding feature

is that it implements the numerical simulation and

visualization programs provided by the Matlab

(Figure 3C).

Searches for functional networks of interest are

entered in the left panel using key words associated

with network topology, function, network name

and engineering function. Search results appear in

the right panel. Clicking a record of interest displays

its contents. As shown in Figure 4, the ‘Spec’ tab

Figure 2: A functional network built by combination of elementary networks. Combination of FFLs generates
multi-output FFLs with the FIFO function. The FFL network is the ascendant; the multi-output FFL network is the
descendant.
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illustrates many items to explain the features of the

functional network, including network name, net-

work map, function and simulated results. The ‘Rel’

tab presents the relationship between the ascendant

and descendant functional networks. The ‘Desc’ tab

provides an explanation of the background, network

structure and simulated results shown in the ‘Spec’

tab. There are many synonyms for network architec-

ture and function. The ‘Comp’ and ‘RNF’ tabs

provide descriptions in the context of engineering

and RNF, respectively. The ‘Note’ tab presents the

mathematical equations, theory and detailed math-

ematical interpretations. In the ‘Calc’ tab, users can

simulate the mathematical model encoded by the

Matlab program, while changing the value of key

parameters. The ‘Codes’ tab shows the correspond-

ing Matlab programs.

TYPICAL FUNCTIONAL
NETWORKS
The same function by different networks
The same biological function can be generated by

different types of functional networks. Here we focus

on specific functional networks to demonstrate that

different network topologies can encode the same

function.

Perfect adaptation
Perfect or exact adaptation, where the steady-state

level of the output is independent of changes in

the input signal after a transient response to the

change, is achieved by different functional networks:

combined linear reactions (ID 203) [16, 22], inco-

herent FFL (ID 12) and feedback loop (ID 15, 146,

147, 297) [22, 28, 40]. In the combined linear reac-

tions, supplementing the simple linear reaction with

a second signaling pathway (X) can create a response

mechanism that exhibits perfect adaptation (R) to

the signal (S) (See ID 203). The integral feedback

control is a basic engineering strategy for ensuring

that the output of a system robustly tracks its desired

value independent of noise or variations in system

parameters [28, 29]. The response to an extracellular

stimulus returns to its prestimulus value even in the

continued presence of the input signal.

Bistability
Bistability is a basic feature of many functional

networks and is used as a toggle switch in the deci-

sion-making processes of cell-cycle progression,

differentiation and apoptosis. Bistability is typically

generated by positive feedback loops with ultrasen-

sitive response, caused by cooperative transcription

factor binding (ID 63, 65, 66, 67, 124, 171) [16,

22, 41–43]. On the other hand, a two-gene network

with a positive feedback loop has been reported to

produce bistability without cooperative transcription

binding (ID 264) [22, 26]. In this network, one gene

is the repressor and the other plays the dual functions

Figure 3: Specification of a functional network.
Details are described in the DB.
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of self-activation and suppression of the repressor. An

essential mechanism is the competitive binding of

repressor and activator to the promoter.

Some functional networks show bistability without

explicit positive feedback loops. A chain of phosphor-

ylation reactions can generate bistability (ID 174) [22,

30], where the same kinase consecutively phosphor-

ylates the non- and mono-phosphorylated kinases and

the same phosphatase dephosphorylates the mono-

and double-phosphorylated substrate forms. In add-

ition, commonly used enzymatic reactions for a single

overall reaction, involving one or two substrates, are

capable of bistability, suggesting that it is rooted in

simple chemistry (ID 271) [22, 44].

Different functions by a unique network
architecture
Functions in unique network architecture often

depend on reaction kinetics or the value of kinetic

parameters. By changing the kinetic values, a positive

feedback loop can generate different responses such

as slow response, ultrasensitivity and bistability (ID 1,

48, 63, 66, 67, 69, 114, 124, 183, 190, 192) [9, 16,

41, 44–46]; positive and negative feedback loops

can produce oscillation (ID 129) or pulse generation

(ID 185) [41, 44]; and a three-layer structure of

phosphorylation chain reactions can generate ultra-

sensitivity, bistability or oscillation (ID 174, 249, 250,

251, 253, 259, 281) [30, 44].

Complex functions generated by
combined networks
A combination of functional networks can produce a

complex high-level function by additive, synergistic

and emergent effects, which increases the designabi-

lity of a biochemical network.

Additive effect
Assembly of functional networks can superimpose

their functions. A combination of fast and slow

Figure 4: BioFNet database. (A) Search panel. (B) Record content. (C) Simulation tool and simulated results.
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positive feedback loops generates a dual-time switch

that is rapidly inducible and resistant to noise (ID

173) [44, 47]. The output is generated rapidly as a

consequence of the kinetic properties of the fast

loop, while it turns off slowly as a consequence of

the kinetics of the slow loop. The combined net-

work allows for independent tuning of the activation

and deactivation rates. A combination of type-1 co-

herent feedforward loops (C1-FFLs) can generate a

FIFO order (ID 128) by separately tuning the thresh-

old value of each switch for C1-FFLs [39, 44]. The

interlocked FFL network consists of the type-1

incoherent FFLs that produce the gene expression

pulse and the C1-FFLs responsible for a time delay

between pulses. Thus, the interlocked FFL network

can generate gene expression pulses in temporal

order (ID 52) by independently tuning the threshold

values for switching gene expression [22, 48].

A combination of diamond network motifs forms a

perceptron model, integrating multiple input signals

into a variety of outputs (ID 11) [22, 49]. This net-

work is similar to the information processor of multi-

layer perceptrons. As shown in the record for ID 11,

combination of input signals X1 and X2 calculates

the values of Y1 and Y2 in the second layer. Y1 and

Y2 generate the output of Z in the third layer.

Combination of X1 and X2 can generate various

output patterns: AND, OR, XOR, NOT, NAND

and NOR by independently tuning the parameter

values.

Synergistic effect
Addition of a functional network to an existing

network can enhance the function of the existing

one. Addition of a positive feedback loop to a nega-

tive feedback loop network enhances the oscillatory

behavior generated by the negative feedback

(ID 129, 184) [22, 47]. An increase in the number

of positive feedback loops enhances bistability

(ID 65) [22, 45].

Figure 5: Architecture of the BioFNet.The client^ server model is accessed through Internet Explorer 8, Internet
Explorer 9 and Firefox 13/15 inWindows XP/Vista/7 and through Firefox 13/15 in Linux. A personal computer [CPU:
Intel(R) Celeron (R) 450, 2.20 GHz, RAM: 1 GB] is used as the server machine, running LINUX CentOS5.5. The
GUI program is written in PHP 5.2, JavaScript, CSS2 and HTML4. The database can be queried using standard SQL
to retrieve functional networks that may be relevant to given key words. PostgreSQL (version 8.4.6) is used to regis-
ter the functional network data. The mathematical simulation programs are written in Matlab (R2009a). All m-files
are converted into executable files by the Matlab compiler and are controlled through PHP. Data are automatically
backed-up by Redundant Arrays of Inexpensive Disks (RAID1). The entirety of each record can be downloaded as
PDF or text files.
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Emergent effect
A sequential chain of phosphorylation reactions is

expected to generate ultrasensitivity. Interestingly,

such chains of phosphorylation reactions can create

bistability despite the absence of an explicit positive

feedback loop. A three-layer structure of the phos-

phorylation chain reactions can create unexpected

oscillations despite the absence of an explicit negative

feedback loop (ID 174, 249, 250, 251, 253, 259,

281) [22, 30].

Loss of function
The combined network may cause loss of function of

the ascendant networks. Addition of a positive feed-

back loop to a bistable switch network can form a

more digital-like response, providing robustness

against external perturbation, but may reduce robust-

ness to internal perturbation owing to inherent prop-

erties of the positive feedback loop. The Escherichia
coli ammonia assimilation system exemplifies such

loss of function [22, 50]. The assimilation system

consists of complex but highly structured modules:

the glutamine synthetase (GS) activity feedback con-

trol module with bidirectional reactions catalyzed by

bi-functional enzymes (UTase/UR, PII, GlnK) (ID

132) and the GS synthesis feedback control module

that implements negative and positive feedback loops

(ID 124, 165) with a two-component phosphorelay

system comprising NRI and NRII (ID 200) [22, 51].

The GS activity module presents a fast response that

is robust to internal perturbation; the GS synthesis

module amplifies GS activity with respect to ammo-

nia depletion. The GS activity module was added to

the GS synthesis module to improve the transient

response to ammonia depletion, but the robustness

to internal perturbation was lost. A combined net-

work can enhance a specific function, while trigger-

ing the loss of other functions.

Combination of functional networks
with spatial constraint
Spatial gradients of morphogen generally involve a

variety of pattern formations [22, 36, 52].

Combination of an elementary network with spatial

gradients generates an emergent function. Pattern

formation by spatial gradients has been built on

Turing’s original model and the ‘activator–inhibitor’

models of Meinhardt and Gierer (ID 106, 107). The

emergence of ultrasensitive (switch-like) responses

to input signal provides a versatile mechanism for

the design of a biochemical switch. The simple

first-order kinetic system can exhibit ultrasensitivity

in combination with the exponential dependence of

spatial location of a diffuse molecular signal (ID 8)

[22, 53]. Any two-state system with transition rates

that are exponentially dependent on an input signal

can be ultrasensitive with respect to the input signal.

Morphogen-based spatial patterning is a two-step

process: morphogen gradient formation by diffusion

followed by morphogen interpretation. The inco-

herent type-1 FFL (ID 266), positive and negative

feedback loops (ID 268) and regulated mutual inhib-

ition network (ID 265) emerge to create a single

stripe of expression in combination with input

signal gradients [20, 22].

Importance of biochemical and kinetic
details
Biological functions not only depend on network

topology but also on details of the biochemistry or

kinetics. Perfect adaptation by the integral feedback

control network can be determined from the bio-

chemical details such as a zero-order reaction, linear

response or logarithmic input functions (ID 12,

146,147). Dynamics generated by a single negative

feedback loop depend on the kinetics of suppression

described by different mathematical formulas: linear,

power-law and Michaelis–Menten type equations

[22, 41]. Use of the linear equation can provide

adaptation, a robust property with respect to a

change in input signal (ID 165). Use of the power-

law formula limits output with high-intensity input

signals, but does not limit output with low-intensity

noise (ID 188). Use of the Michaelis–Menten equa-

tion provides homeostasis to the output with low-

intensity input or noise removal (ID 187).

Stochastic behaviors
Analogous to an engineering system that exclusively

pursues the removal of noise, biochemical systems

manage to reduce noise. Negative feedback loops

are the typical mechanism to suppress noise on the

molecular level (ID 102, 103). Other mechanisms

such as fast turnover [22, 54, 55] (ID 105) and in-

crease in the number of molecules within a cell (ID

104) also remove noise. Interestingly, some func-

tional networks use noise to survive stochastic envir-

onments, suggesting cells have evolved to use

stochastic noise rather than remove it.

Many bistable networks (ID 66, 67, 124, 174, 249,

250, 264, 271) are described by deterministic equa-

tions. Addition of noise can cause a monostable
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network described by deterministic equations to

show bistability or a bimodal response. Noise can

enforce the values of some parameters within the

monostable range to the bistability range, generating

a bimodal response in a system where bistability ap-

pears within a certain range of parameters but its

current parameters place the system in a monostable

range (ID 274) [22, 56]. Even in the systems that are

monostable for all parameter ranges, noise can pro-

mote emergence of bistability or bimodal response

(ID 295) [20, 22, 46]. The noise-induced emergence

of bistability is exemplified by the enzymatic futile

cycle, which represents a recurring control motif in

many processes from energy metabolism to signal

transduction (ID 295) [46, 57–60]. The enzymatic

futile cycle is a bidirectional reaction catalyzed by

different monofunctional enzymes, described by

the Michaelis–Menten equations. Its deterministic

model never directly results in bifurcation, oscillation

and other complex behaviors, but noise serves to

confer bimodality, bistability or stochastic amplifica-

tion/signaling.

Noise-induced heterogeneity of gene expression

within a cell is also critical to biological design. As

shown in noise filter-induced bimodality (ID 278)

and bimodality due to transcriptional pulsing (ID

294), noise can generate spatial heterogeneity of

gene expression in cell populations and temporal

heterogeneity of gene expression [61]. In the NF-

kB signaling system, dual-delayed negative feedback

loops induce heterogeneous timing of oscillations

between individual cells by using different delay

times (ID 273) [55, 61].

COMPARISONSWITH
ENGINEERING
Specifically designed network
Comparisons between biology and engineering

improve our understanding of biological systems.

At the system level, despite extremely different

physical implementations, similar regulatory strate-

gies such as feedback, feedforward and redundancy

are widely used in engineering and in biological

systems. Functional networks seem to be specifically

designed to generate a variety of functions neces-

sary for cellular systems, just as electric circuits are

rationally designed as a combination of fundamental

elements such as an amplifier, sensor, switch and

oscillator.

Modularity
Engineering sciences exploit the properties of modu-

lar designs. A new module is superimposed or com-

bined with an existing module through an interface

according to standardized protocols that demonstrate

efficiency, reliability, safety and robustness.

Modularity guarantees that the complexity of a

design is hidden in ‘black boxes’ that possess well-

defined inputs, outputs and functionality. At the

same time, standardized interfaces guarantee the

plug-and-play addition of new modules, without

the need for extensive fine adjustments.

Analogous to engineering systems, the functional

networks would undoubtedly be crucial for rational

design of a large-scale biochemical network. The

large-scale network will be built by complex com-

binations of functional networks and can be under-

stood in terms of a hierarchical modular structure. Is

it possible to regard the functional networks as the

black boxes of engineering systems? Although the

functional networks seem to exhibit expected dy-

namical behaviors, it is not yet known to what

extent and how they interact with each other.

They would also experience considerable interfer-

ence from other networks through biomolecules.

Designability
Use of BioFNet may enable more efficient, predict-

able, design-driven genetic engineering, which

allows for reasonable selection from a vast list of

components that meet a given function. For ex-

ample, a bistable switch or a bistability network

(ID 63, 65, 66, 67, 124, 171) can be built with

positive feedback loops or phosphorylation

cascades (ID 174). To identify the most suitable

component, it is necessary to characterize the robust-

ness of the bistability function with respect to

parameter uncertainty and environmental changes,

and to estimate the interactive effects between the

embedded functional network and its surrounding

networks.

Combination of functional networks increases our

ability to design different behaviors. They can be

rationally assembled for a given function, analogous

to control engineering architecture, as indicated in

previous studies [10, 11, 22, 50], while considering

the additive, synergistic, emergent effects and loss of

function. In addition, the combination of functional

networks often produces a global loop that passes

through them, changing the control architecture

[11, 62, 63]. This requires readjustment of the kinetic
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parameters such that the combined network func-

tions properly.

Kinetic adjustment
In silico, we can readily modify, design and assemble

functional networks because the kinetic parameters

can be arbitrarily optimized or changed. Invivo, how-

ever, a serious practical problem emerges with bio-

molecule kinetics. Assembly of biomolecules requires

kinetic adjustments so that the assembled molecules

can act in concert. This requires quantitative kinetic

information regarding the biomolecules and their

interactions. If the kinetic parameters were arbitrarily

adjusted in vivo, synthetic biology could yield the

profound benefits seen in engineering sciences,

which have not been realized in biology yet. The

quantitative standards of biological parts have been

discussed elsewhere [11, 64].

Design principles
Engineering systems have used biology-inspired al-

gorithms such as fuzzy systems, neural networks,

genetic or evolutionary algorithms for optimization

and autonomous distributed systems, while biology

often uses engineering terms such as robustness, sta-

bility, amplifier, sensor, feedback and feedforward.

Thus, the gap between biology and engineering is

being filled. What are the principles of biological

design? In vivo, the number of biomolecules and

their kinetics stochastically vary with time and fluc-

tuating environments, greatly differing from the en-

gineering systems that precisely specify their

components and minimize parameter uncertainty

and noise [11, 56, 65]. In this context, biological

design is characterized by the fact that cells must

coexist with such parameter uncertainty and noise.

In fact, some biochemical systems use noise to en-

hance oscillation and bistability or to generate het-

erogeneity of gene expression. Noise-generated

heterogeneity can increase the chances for some

parts of the cell population to adapt to fluctuating

environments. They may be advantageous for sur-

vival in consistently fluctuating environments.

TOWARDCELLDESIGN
The essence of synthetic biology is to make biology

predictable, controllable and design-ready. The de-

velopment of BioFNet would enable better under-

standing of biological design principles and would

lead to advances in rational design of biochemical

systems. We advocate a ‘bottom-up’ approach in

which the assembly of functional networks comprises

the whole cell. A deep understanding of this concept

can dramatically increase the speed of design and

reduce the cost of development. Our ever-expand-

ing database will contribute to the design of robust

biological systems in silico before fabrication, just as

aeronautic engineers use computer-aided design

tools to build airplanes.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Functional networks, which can be defined as the biochemical
subnetwork of biomolecules assembled to generate a particular
function, are presented and reviewed.

� We developed a biological functional network databasewith the
capacity to cover the entire cell at the molecular interaction
level.

� The outstanding feature of the database is that it implements
the numerical simulation and visualization programs provided
by Matlab.

� The database presents a sound basis for understanding how
functional networks are assembled and for the rational design
of biochemical networks.
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