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Dynamic simulations are essential for understanding the mechanism of how
biochemical networks generate robust properties to environmental stresses or
genetic changes. However, typical dynamic modeling and analysis yield only
local properties regarding a particular choice of plausible values of kinetic pa-
rameters, because it is hard to measure the exact values in vivo. Global and
firm analyses are needed that consider how the changes in parameter values
affect the results. A typical solution is to systematically analyze the dynamic
behaviors in large parameter space by searching all plausible parameter values
without any biases. However, a random search needs an enormous number of
trials to obtain such parameter values. Ordinary evolutionary searches swiftly
obtain plausible parameters but the searches are biased. To overcome these
problems, we propose the two-phase search method that consists of a random
search and an evolutionary search to effectively explore all possible solution
vectors of kinetic parameters satisfying the target dynamics. We demonstrate
that the proposed method enables a nonbiased and high-speed parameter search
for dynamic models of biochemical networks through its applications to several
benchmark functions and to the E. coli heat shock response model.

1. Introduction

Computer simulations enable one to capture the dynamic behavior of complex
biochemical networks. In principle, both molecular network architecture and the
values of kinetic parameters determine the dynamic behavior of systems. In biol-
ogy, molecular network structures are being built, but it is still hard to measure
the accurate values of kinetic parameters in vivo due to experimental complex-
ity. The values of kinetic parameters vary with time and environment and the
measured values in vitro are often different from those in vivo. In many studies,
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a particular set of local kinetic parameters has been determined for convenience
so that dynamic models reproduce target data. Thus, the simulated results often
depend on the values of kinetic parameters, or reflect only a local view of the
system. There have been only a few simulation methods that extensively inves-
tigated how a systematic change in the parameter values alters the prediction of
dynamic behaviors 1)–5).

To compare some performances of alternative mathematical models, Alves,
et al. 1)–3) statistically searched their parameter values so that they make the
other dynamic properties the same. Stelling, et al. 4) studied dynamic properties
linked to network structure in the per -tim feedback loop model by systematically
investigating the two dimensional parameter space and suggested some influential
process determining the oscillator features. These previously presented random
or systematic searches are a great step for approaching to global analysis, but they
restricted the search space of parameters or the size of models due to calculation
complexity.

In mathematical analysis for robustness (MAR), we proposed the evolutionary
method that explores possible solution vectors of kinetic parameters satisfying
the target dynamics and extracts the global mechanism of how changes in ki-
netic parameters alter the robustness of a circadian oscillator 5). The employed
evolutionary method tries to search all possible solutions in a greatly extended
space, but it still remains to be improved or to be verified in terms of search
performance. The critical requirement for obtaining global results is the nonbi-
ased search in large parameter space. One must prevent the search from being
intensively performed on local regions.

To overcome the problems of nonbiased search for a large parameter space, we
developed a novel search algorithm, the two-phase search (TPS) method that
smoothly combines a random search with an evolutionary algorithm to achieve
both nonbiased and high-speed searches. To demonstrate the feasibility of this
method, we apply it to benchmark problems and reveal its search performance
in terms of the calculation efficiency and solution distributions. Finally, the
effectiveness of the TPS method is verified through the parameter search of the
E. coli heat shock response model 6),7).
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2. Methods

2.1 Dynamic Model to be Optimized
Generally a dynamic model for biochemical networks is formulated by

differential-algebraic equations (DAEs):
0 = G(x,y,P) (1)
ẏ = F(t,x,y,P) (2)

where t is time, and P is the kinetic parameter vector. The algebraic equation
(1) shows the binding reaction for complex formation (e.g., Eqs. (A1)–(A19) in
Table 4), while the differential equation (2) indicates the synthesis, conversion
and degradation of molecules (e.g., Eq. (12) and Eqs. (A20)–(A28) in Table 5). In
Eq. (1), x is the dependent variable vector that indicates the concentration of free
molecules and binding complexes (e.g., [σ70], . . . , [σ32:DnaK:FtsH] in Table 6),
while, y is independent variable vector that consists of the total concentration
vector of each molecule (e.g., [Protein] in Eq. (12) and [Pfold ], . . . , [Punfold ]total

in Table 7). In Eq. (2), x is set to be the independent variable vector and y is
the time-dependent variable vector.

Numerical optimization for a dynamic model is used to estimate the values of
kinetic parameters so that the model reproduces the behaviors of the existing
experimental data 8)–10). A certain fitness function is necessary to characterize
the degree to which the model reproduces the target experimental behaviors.

2.2 Two-phase Search (TPS) Method
Since biological data contain different types of errors, it is meaningless to seek

the global minimum for the fitness function defined for a given dynamic model.
The objective in this study is not to find such a global minimum, but to explore all
possible plausible solutions of kinetic parameter vectors that produce the target
dynamics.

The TPS method is proposed that combines a random search with a search
by genetic algorithms (GAs), as shown in Fig. 1. Details of its computation
algorithm are shown in Appendix Fig. 10. First, the random search explores a
large parameter space without any biases to find a coarse solution showing a good
fitness value. In this phase, it is not necessary to find any solutions providing
lowest fitness values. The resultant coarse solution is employed to generate the

Fig. 1 Schematic diagrams of the TPS method. A: A flow chart for TPS that consists of a
random search (the first phase) and a search by GAs (the second phase). B: How to
create the initial populations for the second phase search by GAs. AE indicates the
allowable error, AEC the allowable error for the coarse solution, and RIG the region
of the initial population for the search by GAs.

initial populations for the subsequent search by GAs. Second, after the initial
population is created around the coarse solution vectors, use of GAs intensively
searches all plausible solution vectors that show a low fitness value or provide the
target features. This two-phase search is iterated to obtain the sufficient number
of the plausible solutions (Fig. 1 A). The i-th resultant solution vector of kinetic
parameters Pi is given by:

Pi = (pi,1, pi,2, . . . , pi,N ), (3)
where pi,j is the value of the j-th parameter of the i-th solution vector and N is
the number of search parameters.

The TPS method has two critical control parameters: the allowable error for
the coarse solution (AEC) obtained by a random search in the first phase and
the region of the initial population for the search by GAs (RIG) in the second
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phase. The end condition of the first phase search is provided by:
Fitness(P) < AEC. (4)

The end condition of the second phase search for a final solution is given by:
Fitness(P) < AE, (5)

where AE is the allowable error of the plausible solution (AE < AEC). The
initial population for the GA search is randomly generated within the hypercube
whose edge length is RIG and whose centroid is set to the coarse solution in
the first phase (Fig. 1 B). We also define the relative value of AEC to AE and
the relative value of RIG to the search region of each parameter, which are
respectively provided by:

RAEC = AEC/AE, (6)
and

RRIG = RIG/(pU − pL), (7)
where pU is the upper bound for the value of kinetic parameter and pL the lower
bound.

2.3 Characterization of the Solutions
Three standards are defined to characterize the search results, the number of

evaluations necessary for obtaining a given number of the final solutions (EVA),
the centroid vector (CRV) and standard deviations vector (SDV) for the solution
distributions. The CRV and SDV characterize the statistical features for the
solution distributions, defined by:

CRV = (c1, c2, . . . , cN ), (8)

cj =
1
M

M∑
i=1

pi,j , (9)

SDV = (sd1, sd2, . . . , sdN ), (10)

sdj =

√√√√ 1
M

M∑
i=1

(pi,j − cj)2, (11)

where M is the number of solutions. A small value of EVA indicates an efficient
or high-speed search. A search can be regarded nonbiased, when two standards
of CRV and SDV are close to those in a random search. To obtain detailed in-
formation for a solution distribution, the frequency distributions of the solutions

Table 1 Benchmark functions. AE is the allowable error.

Objective function (n = 2) Search region AE

Sphere f(P) =
∑n

i=1
p2

i −5.12 < pi < 5.12 0.333

Rosenbrock f(P) =
∑n−1

i=1
(100(pi+1 − p2

i )2 + (pi − 1)2) −2.048 < pi < 2.048 0.676

Rastrigin f(P) = 10n +
∑n

i=1
(p2

i − 10 cos(2πpi)) −5.12 < pi < 5.12 6.00

Schwefel f(P) = 418.9828873n +
∑n

i=1
pi sin

√
|pi| −512 < pi < 512 215

ANFM f(P) =

∣∣∣∣
−p2+

√
p2
2+4p1p2

2
− 1

∣∣∣∣ 0.02 < p1 < 200
0.01 < p2 < 100

10−4

Fig. 2 Landscapes of the benchmark functions and their solution spaces. (A) Sphere,
(B) Rosenbrock, (C) Rastrigin, (D) Schwefel, (E) ANFM. Blue regions are the so-
lution spaces.

with respect to each search parameter are presented.
2.4 Benchmark Functions
In this paper, the parameter search of a dynamic model of biochemical net-

works indicates finding all possible values of the parameters that satisfy specific
objective functions. To investigate the search capability of the TPS method,
we employ several generally-used benchmark functions as shown in Table 1.
The landscapes of the benchmark functions and the solution spaces are shown
in Fig. 2, where pi is the i-th kinetic parameter. A Sphere function is unimodal
and its variables are separable. The Rosenbrock function is unimodal, while its
variables are non-separable. The Rastrigin function and the Schwefel function
are multimodal and their variables are separable. In the former, the solutions
distribute around the center of search region; in the latter, they are distributed
far from the center. The experiments were performed on the two dimensional
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space. Their allowable errors (AEs) were determined so that 1% of the randomly
generated sets of the parameter values provide a fitness value of less than the
AEs (Table 1).

Next, we add the benchmark function of a typical biological model with an
autogenous negative feedback model (ANFM):

d[Protein]
dt

= k
K

K + [Protein]
− [Protein] (12)

where [Protein] is the protein concentration, k the synthesis rate constant and K

the binding constant. The protein suppresses its own synthesis. The steady-state
concentration [Protein]ss is analytically provided by:

[Protein]ss =
−K +

√
K2 + 4kK

2
(13)

The target behavior is set to steady-state concentration [Protein]ss of 1. There-
fore, the ANFM benchmark function is defined by:

f(k,K) =

∣∣∣∣∣
−K +

√
K2 + 4kK

2
− 1

∣∣∣∣∣ (14)

Two kinetic parameters (k,K) are explored in logarithmic space, where the basis
parameter vector is set to (k,K) = (2, 1) that provides one to the steady state
concentration of [Protein]ss and AE is set to 10−4. In our parameter searches,
the value of each basis parameter was 10−2 to 102-fold varied in logarithmic
space. k is provided as p1 and K is as p2.

2.5 Dynamic Model of the E. coli Heat Shock Response
A biochemical network map of the E. coli heat shock response is shown in

Fig. 3A 6),7). Heat shock denatures or unfolds proteins, compromising cellular
function. To counter heat shock, heat-shock proteins (hsps), chaperones and
protease, are produced to refold the denatured proteins to their native state and
to degrade them. The regulation of the synthesis, degradation, and activity of
the σ32 factor plays a major role in heat shock. The time course of the σ32

concentration is shown in Fig. 3 B. The level of σ32 increases rapidly at heat
shock, achieves a sharp peak, and then reduces to a new steady state.

The mathematical model was constructed by the CADLIVE GUI network con-
structor 11),12) and the CADLIVE dynamic simulator 13). Appendix A.1 indicates

Fig. 3 An E. coli heat shock response model. A: A network map. The notation of
CADLIVE 11)–13) is used for simplifying the diagram. B: Time evolution of the σ32

concentration (red, [σ32]total in Table 7) and the ratio of the folded protein concentra-
tion to the total protein concentration (blue, [Pfold ]/([Pfold ]+[Punfold ]total) in Table 7).
Heat shock occurs at 60 min and is implemented through an increase in the rate con-
stant for protein denature.

the equations, initial conditions, lists of molecular concentration variables and
kinetic parameters. The simulation is performed for 100 minutes. Heat shock
occurs at 60 min and is implemented through an increase in the rate constant for
protein denature (Table 8).

To capture the typical dynamic features of the heat shock response, the fitness
function is defined by:

Fitness = 2− ratio1− ratio2 + penalty1 + penalty2, (15)
where ratio1 is the ratio of the folded protein concentration to the total pro-
tein concentration before heat shock and ratio2 that after heat shock (Fig. 3 B).
penalty1 and penalty2 impose penalty on the fitness when the level of σ32 does
not behave as mentioned above. This fitness function mainly targets the protein
refolding ability. ratio1 and ratio2 are presented by:

ratio1 =
[Pfold ]at59min

[Pfold ]at59min + [Punfold ]total,at59min
, (16)

ratio2 =
[Pfold ]at100min

[Pfold ]at100min + [Punfold ]total,at100min
. (17)

As ratio1 and ratio2 become close to 1, the fitness approaches to zero, which is
the best value. penalty1 and penalty2 are presented by:

IPSJ Transactions on Bioinformatics Vol. 2 2–14 (Mar. 2009) c© 2009 Information Processing Society of Japan



6 Two-phase Search (TPS) Method: Nonbiased and High-speed Parameter Search for Dynamic Models of Biochemical Networks

penalty1 = 1− [σ32]total,at100min − [σ32]total,at59min

[σ32]total,at59min
, (18)

penalty2 = 1− max ([σ32]total)− [σ32]total,at100min

[σ32]total,at100min
, (19)

where max ([σ32]total) is the maximum value for the total σ32 concentration in
the simulation. If penalty1 is less than zero, penalty1 is set to zero. penalty2
is set in the same manner. The kinetic parameter solutions are estimated that
satisfy the condition: Fitness < AE = 2 × 10−2, indicating that the means
between the ratio of the folded proteins to the total proteins before heat shock
and that after heat shock are 0.99.

A very small value of AE is not practical, because experimental data generally
contain considerable errors. Adversely, a large value of AE cannot reproduce the
target behaviors of the heat shock model. It is still hard to mathematically or
precisely estimate a best value of AE by considering how the biological errors
are generated, because the errors are not quantified. In this model, we choose

Table 2 Characterization of the search performance of RS, SGA, and TPS. The presented data by TPS are best cases in our
experiments. For Schwefel, TPS did not simultaneously achieve a lower EVA than RS and the same CRV and SDV as
RS. If |ci| < 10−2, ci is set to zero.

CRV SDV
EVA c1 c2 sd1 sd2

RS 1.00 × 106 0.00 0.00 2.89 × 10−1 2.89 × 10−1

Sphere SGA 5.67 × 105 0.00 0.00 2.76 × 10−1 2.76 × 10−1

TPS (RAEC = 1.01, RRIG = 0.4) 9.93 × 105 0.00 0.00 2.88 × 10−1 2.88 × 10−1

RS 9.64 × 105 8.68 × 10−1 8.62 × 10−1 3.30 × 10−1 5.69 × 10−1

Rosenbrock SGA 9.71 × 105 6.57 × 10−1 5.33 × 10−1 3.20 × 10−1 4.78 × 10−1

TPS (RAEC = 1.02, RRIG = 0.4) 9.54 × 105 8.67 × 10−1 8.60 × 10−1 3.31 × 10−1 5.70 × 10−1

RS 1.07 × 106 0.00 0.00 1.03 1.03
Rastrigin SGA 6.07 × 105 0.00 0.00 1.00 1.00

TPS (RAEC = 1.01, RRIG = 0.4) 1.06 × 106 0.00 0.00 1.03 1.02

RS 9.12 × 105 −2.33 × 102 −2.34 × 102 3.27 × 102 3.26 × 102

Schwefel SGA 3.25 × 106 −1.89 × 102 −1.88 × 102 3.42 × 102 3.42 × 102

TPS (RAEC = 1.01, RRIG = 0.4) 9.06 × 105 −2.31 × 102 −2.33 × 102 3.28 × 102 3.27 × 102

RS 3.07 × 108 100.717 10−0.283 100.636 101.12

ANFM SGA 5.61 × 106 100.516 10−0.176 100.408 100.716

TPS (RAEC = 100, RRIG = 0.002) 4.00 × 106 100.718 10−0.282 100.637 101.12

an appropriate value of AE that is small enough for the model to indicate a
biologically successful refolding of heat-denatured proteins.

3. Results and Discussion

3.1 TPS Application to Benchmark Functions
In order to demonstrate the feasibility of TPS, we applied it to the benchmark

functions (Table 1) to search all possible solution vectors that give a smaller
fitness value than a defined AE and investigated the search performance of EVA,
CRV, and SDV. Three types of the searches: a random search (RS), a search by
GAs (SGA), and TPS, were iterated until the number of the solutions reached to
10,000. RS and SGA were used as controls. In SGA, one search was stopped when
a solution was obtained or the search reached to the maximum generation. For the
next search, the initial population was newly generated. The unimodal normal
distribution crossover (UNDX) 14) and minimal generation gap (MGG) 15) were
employed as crossover and selection, respectively. Mutation was not employed.
The maximum generation was 100, the population size was 10, and the number of
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the children generated by the crossover per selection was 10. In TPS, the second
phase employed the same setting as SGA. Since the TPS method aims at both
high-speed and nonbiased searches, TPS is expected to achieve a smaller EVA
than RS and to provide the same CRV and SDV as RS.

The search performance of TPS is summarized in Table 2. The performance
values of EVA, CRV and SDV are the average values for 10-time trials. We com-
pared these values between TPS and the controls (RS and SGA) (Appendix A.3).
In terms of EVAs, TPS was a fast algorithm in ANFM, while it was not so fast
for the other benchmark functions. The EVA value by the well-designed TPS was
1.3% of that of RS for ANFM, while the EVA values by TPS were roughly 99%
of those of RS in Sphere, Rosenbrock, and Rastrigin. These 1% reductions were
statistically significant (Appendix A.3), although they are no use for practical
purpose. For Schwefel, the EVA by TPS was not significantly reduced compared
with that by RS. In terms of solution distributions, the CRV and SDV by TPS
were statistically the same as those of RS, suggesting that TPS presents non-
biased search. On the other hand, the CRV and SDV by SGA were significantly
different from those of RS for all benchmarks, indicating that the solutions by
SGA are biased.

To further investigate the solution distributions by TPS in comparison with
RS and SGA, we plotted the frequency distribution of the solutions with respect
to each search parameter in Fig. 4. The frequency distributions by TPS are
the same as those by RS for all benchmark functions, as expected from Table 2,
where RS is assumed as a non-biased search. On the other hand, the frequency
distribution by SGA is clearly different from those by RS for Rosenbrock and
ANFM, indicating that the solutions by SGA are biased. Note that the solution
distributions by RS and SGA are statistically different in the other benchmarks
of Sphere, Rastrigin, and Schwefel. Rosenbrock and ANFM have the typical
landscapes with a thin and long solution space (Fig. 2), which may make the
search space by SGA notably biased. The differences in the CRV and SDV in
Table 2 are confirmed as the differences in these solution distributions. In sum-
mary, when AEC and RIG were well-designed, TPS provided the same solution
distributions as RS in all the benchmarks, indicating that TPS is a non-biased
search. For ANFM, TPS is demonstrated to be a efficient and non-biased search

Fig. 4 Frequency distributions for each solution parameter searched by RS, SGA and TPS
in the benchmark functions.

algorithm.
3.2 Characterization of the Two Control Parameters in Benchmark

Functions
TPS has two control parameters critically responsible for search performance.

Effects of AEC and RIG on the search performances of EVA, CRV and SDV were
investigated, as shown in Fig. 5. In a broad range of RIG, EVA decreased with
the increase in AEC and then increased for the benchmarks except Schwefel,
indicating there is an optimal or minimum value for EVA. This tendency is
clearly observed in ANFM, while it is judged from the numerical data in the
other functions. A change in RIG affected the performance of TPS at a large
value of AEC, while it did not at a small AEC. At an adequately small value
of AEC (RAEC ≈ 1), the EVA, CRV and SDV were almost the same as those
by RS, indicating that TPS performs in the same manner of RS at a small AEC
value. At large values of AEC and RIG, the EVA, CRV and SDV were almost
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Fig. 5 Characterization of the search performance by the TPS method. The EVAs, CRVs and SDVs are calculated for different
values of the control parameters (AEC and RIG). (A) Sphere, (B) Rosenbrock, (C) Rastrigin, (D) Schwefel, and (E) ANFM.
If |ci| < 10−2, ci is set to zero.

the same as those by SGA, indicating TPS with adequately large AEC and RIG
behaves like SGA. The combination of a large AEC and a small RIG caused
massive EVA and the eccentric CRV and SDV that are far away from those of
both RS and SGA. This combination forced the second phase search of TPS to
perform in a narrow region surrounding unreasonable coarse solution.

Here, we statistically investigated the feasible regions in which TPS achieved a
lower EVA than RS and the same solution distribution as RS, as shown in Fig. 6.
For the typically used benchmarks, TPS achieved the same solution distribution
as RS only at a small value of AEC (RAEC ≈ 1.01). Since TPS with a small
AEC became close to RS, TPS did not effectively reduce EVA. In ANFM, by

contrast, TPS achieved the same solution distribution as RS at a wide range of
AEC (1.01 ≤ RAEC ≤ 102). Since a large value of AEC readily finds a coarse
solution in the first phase search (RS) and the solution is quickly obtained in the
second search by GAs, TPS achieves a much smaller EVA than RS.

This indicates that TPS would effectively solve the ANFM benchmark function,
a typical biological equation, rather than the other typical benchmark functions.
This difference in the search performance between the ANFM model and the
others is probably caused by the landscape of the function. The landscape of
the biological equation (ANFM) seems very different from that of the Sphere,
Rosenbrock, Rastrigin and Schwefel benchmark functions (Fig. 2). The biological
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Fig. 6 Characterization of the EVA and solution distributions by the TPS method. The
characterization was performed using the Wilcoxon rank sum test and the goodness-
of-fit test. In (A1-E1), the EVA by TPS is statistically the same as that by RS (red),
the same as that by SGA (blue), or neither close to RS nor SGA (yellow). The EVAs
by TPS are the same as those both by RS and SGA (green), i.e., the EVAs of TPS, RS,
and SGA are all the same. In (A2-E2), the solution distribution by TPS is the same
as that by RS (red), the same as that by SGA (blue), or neither close to RS nor SGA
(yellow). (©) indicates that TPS simultaneously provides a smaller value of EVA than
RS and the same solution distribution as RS, indicating that TPS is a best choice for
an efficient and non-biased search.

benchmark has a long and thin solution space, while the other typical benchmark
functions have scattered or locally condensed spaces.

For all benchmarks, there were some regions in which TPS achieved statistically
the same EVA and solution distribution as RS (Fig. 6). These regions where TPS
shows the same performance (EVA, CRV and SDV) as RS are distributed around
RAEC ≈ 1.01 (red and green marked spaces). On the other hand, the regions
in which TPS achieved statistically the same EVA and solution distribution as
SGA are distributed around a RRIG of 2.0 and the adequately large AEC that
approximately equals the maximum value for each benchmark (blue and green
marked spaces).

3.3 Summary of the TPS Performance in Benchmark Functions
The search performance of TPS is summarized in Fig. 7, although the size and

Fig. 7 Recommendation values for the two control parameters of TPS.

shape of RS-like, SGA-like and the feasible region for TPS are dependent on
benchmarks. The TPS method with a small AEC tends to approach to RS. In
this case, the value of EVA is large, while nonbiased search is performed. When
both the values of AEC and RIG are adequately large, the performance of TPS
becomes approximately close to that of SGA. Thus, TPS achieves a small EVA,
but the solution distributions are different from those of RS. The combination of
a large AEC and a small RIG moves the TPS method far away from both RS and
SGA. This search spends an enormous computational time, which is sometimes
larger than that of RS and provides a different solution distribution from those
of both RS and SGA.

If AEC and RIG are set to an appropriate (optimal) value, the TPS method
achieves high-speed and nonbiased search (Fig. 7). Note that an appropriate value
of RAEC must be very close to 1 for Sphere, Rosenbrock, and Rastrigin, while
it can be set to a large value (> 100) for ANFM. In the former three functions,
since an appropriate value of RAEC is close to 1, i.e., TPS is close to RS, EVA is
not reduced greatly. In ANFM, however, since an appropriate value of AEC can
be set to a large value, TPS performs a high-speed search without any bias. TPS
is demonstrated to be suitable for the ANFM function, a typical biological model,
although it is not practically effective in generally used benchmark functions.

It is still hard to automatically determine the optimal values of AEC and RIG
for different functions, because they depend on the landscape of the functions
(Fig. 2). To determine the value of AEC and RIG, we recommend that one
performs a random search in small size to capture a rough landscape of the
function. Next, estimate AEC based on the landscape. If AEC needs to be
very small, TPS becomes close to RS, i.e., TPS is not effective. If one finds
an appropriate or large value of AEC, one investigates the effect of RIG on the
function in small size. For example, in ANFM an AEC value of 0.01 (RAEC =
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Table 3 Characterization of the EVA and calculation time by RS, SGA and TPS in the
heat shock response model. The searches were performed on a single core of Intel
DualCore Xeon 5160 3 GHz × 2 with 32 GB RAM.

EVA Execution time (hour)

RS 2.45 × 105 261
SGA 1.75 × 105 202
TPS 9.22 × 104 159

100) is reasonable and a value of RRIG is 0.002.
3.4 Application to the Heat Shock Response
The heat shock response model has 43 kinetic parameters. Out of 43 parame-

ters, 11 binding constants (Kb1-Kb11 in Table 8) are searched so that the fitness
value becomes less than AE. In the searches, the basis values for the search
parameters are set to 107 and 10−4 to 104-fold varied in logarithmic space, while
the other 32 parameters are fixed. RS and SGA are employed as controls. The
searches are iterated until the number of solutions reaches to 1,000.

SGA and the second phase in the TPS method employed UNDX and MGG.
The control parameters for SGA were as follows: the maximum generation was
100, the population size 10, and the number of the children generated by the
crossover per selection 10. The control parameters for TPS were designed based
on the results for benchmark experiments. After a random search was performed
to find a coarse solution with Fitness < AEC = 1 (RAEC = 50), the GA search
was performed as follows: the maximum generation was 20, the population size
10, the number of the children generated by the crossover per selection 10, and
RIG 4 (RRIG = 0.5). A RIG value of 4 indicates that the values of the coarse
solutions are 10−2 to 102-fold varied to generate the initial population for the
second phase.

The EVA of TPS is summarized in Table 3. The TPS method reduced the
EVA value to 38% of that of RS and 53% of SGA, indicating that TPS is faster
than RS and SGA. In real time, TPS reduced the calculation time to 61%
of that of RS and 79% of SGA. The statistical properties of the solution spaces
searched by TPS are shown in Fig. 8, where the CRVs and SDVs were calculated
in logarithmic space. The CRVs were approximately the same for three searches
(Fig. 8 A). The SDVs of SGA were smaller than those of RS (Fig. 8 B), indicating

Fig. 8 Statistical properties of the solution spaces searched by RS, SGA and TPS in the heat
shock response model. (A) Centroid vector (CRV), (B) standard deviations vector
(SDV).

Fig. 9 Frequency distributions for each solution parameter in the heat shock response model.

that SGA was biased, while the SDV by the TPS method was approximately
the same as that of RS. This suggests that TPS presents a non-biases search
in the same manner as RS. To further investigate the solution distribution, the
frequency distribution with respect to each search parameter was shown in Fig. 9.
TPS presents relatively the same distribution as RS, while SGA does not. This
supports that the solution distribution by TPS is non-biased. Those of RS and
TPS are not exactly the same, probably because the number of the solutions is
rather small in terms of the extensive 11-dimensional search space.
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The heat shock response model and the ANFM benchmark function are built
based on biochemical kinetics. The search performances (calculation efficiency
and solution distributions) for both the biological models are much better than
those of the typical benchmark functions of Sphere, Rosenbrock, Rastrigin, and
Schwefel. The TPS method is suggested to take advantage in the biochemical
problems built based on molecular kinetics.

4. Conclusion

We propose the TPS method that consists of a random search and an evolu-
tionary search to effectively explore all possible solution vectors of kinetic param-
eters satisfying the target dynamics, which greatly enhances the search efficiency
without any biases in biological problems. The proposed method enables one to
approach to global and firm analyses that consider how the changes in parameter
values affect the results. We investigated the effects of two critical control pa-
rameters, AEC and RIG, of the TPS method on search performance. When the
appropriate values of AEC and RIG are selected, which depends on the landscape
of target functions, TPS achieves both high-speed and nonbiased searches. The
TPS method does not show so high performance for typically-employed bench-
mark functions, but provides a great advantage in biochemical models.
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Appendix

A.1 Mathematical Model for the E. coli Heat Shock Response
The E. coli heat shock response model employed in this paper consists of 28

equations (Table 4 and Table 5), 28 variables, 49 constants (43 kinetic param-
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Table 4 Mathematical equations (1).

Equation Eqn No.

0 = [σ70]total − ([σ70] + [σ70:RNAP ] + [Pg: σ70:RNAP ] + [D: σ70:RNAP ]) A1
0 = [RNAP ]total − ([RNAP ] + [σ70:RNAP ] + [Pg: σ70:RNAP ]

+[RNAP : σ32] + [Ph:RNAP : σ32] + [D: σ70:RNAP ] + [D:RNAP : σ32]

+[RNAP : D]) A2
0 = [σ32]total − ([σ32] + [RNAP : σ32] + [Ph:RNAP : σ32] + [σ32: DnaK]

+[σ32: FtsH] + [D:RNAP : σ32] + [σ32: DnaK: FtsH]) A3
0 = [FtsH]total − ([FtsH] + [σ32: FtsH] + [σ32: DnaK: FtsH]) A4
0 = [DnaK]total − ([DnaK] + [σ32: DnaK] + [Punfold : DnaK]

+[σ32: DnaK: FtsH]) A5
0 = [Punfold ]total − ([Punfold ] + [Punfold : DnaK]) A6
0 = [Pg]total − ([Pg] + [Pg: σ70:RNAP ]) A7
0 = [Ph]total − ([Ph] + [Ph:RNAP : σ32]) A8
0 = Kb1[σ70][RNAP ] − [σ70:RNAP ] A9
0 = Kb2[Pg][σ70:RNAP ] − [Pg: σ70:RNAP ] A10
0 = Kb3[RNAP ][σ32] − [RNAP : σ32] A11
0 = Kb4[Ph][RNAP : σ32] − [Ph:RNAP : σ32] A12
0 = Kb5[σ32][DnaK] − [σ32: DnaK] A13
0 = Kb6[σ32][FtsH] − [σ32: FtsH] A14
0 = Kb7[Punfold ][DnaK] − [Punfold : DnaK] A15
0 = Kb8[D][σ70:RNAP ] − [D: σ70:RNAP ] A16
0 = Kb9[D][RNAP : σ32] − [D:RNAP : σ32] A17
0 = Kb10[RNAP ][D] − [RNAP : D] A18
0 = Kb11[σ32: DnaK][FtsH] − [σ32: DnaK: FtsH] A19

eters and 6 constant concentrations) (Table 6, Table 7, and Table 8).
A.2 Detailed Algorithm of Two-phase Search (TPS)
The TPS method combines a random search with a search by GAs in order to

achieve a high-speed and nonbiased search. Figure 10 is a detailed algorithm of
TPS.

A.3 Statistical Method to Examine the Significant Difference in
EVA, CRV, and SDV

We employed the Wilcoxon rank sum test to examine the significant difference
in EVA by RS, SGA, and TPS. In the section of TPS application to benchmark
functions, we performed 10 times of trial for all searches. Therefore, we conclude
that there is a significant difference in the two mean values for EVA, when the
Wilcoxon rank sum test using 20 values of EVA for the two searches provides
p-value < 0.05.

Table 5 Mathematical equations (2).

Equation Eqn No.
d[Pfold ]

dt
= kp4[mRNA(Protein)] − kx2[Pfold ] + kx3[Punfold : DnaK]

−kpd5[Pfold ] A20
d[mRNA(σ32)]

dt
= km1

[Pg:σ70:RNAP]
[Pg]total

[G] − kmd1[mRNA(σ32)] A21

d[mRNA(DnaK)]
dt

= km2
[Ph:RNAP:σ32]

[Ph]total
[G] − kmd2[mRNA(DnaK)] A22

d[mRNA(FtsH)]
dt

= km3
[Ph:RNAP:σ32]

[Ph]total
[G] − kmd3[mRNA(FtsH)] A23

d[mRNA(Protein)]
dt

= km4[G] − kmd4[mRNA(Protein)] A24
d[σ32]total

dt
= kp1[mRNA(σ32)] − kpd1[σ32] − kpd8[RNAP : σ32]

−kpd9[Ph:RNAP : σ32] − kpd10[σ32: DnaK] − kx1[σ32: FtsH]

−kpd11[σ32: FtsH] − kpd14[D:RNAP : σ32]

−kx4[σ32: DnaK: FtsH] − kpd16[σ32: DnaK: FtsH] A25
d[FtsH]total

dt
= kp2[mRNA(FtsH)] − kpd2[FtsH] − kpd11[σ32: FtsH]

−kpd16[σ32: DnaK: FtsH] A26
d[DnaK]total

dt
= kp3[mRNA(DnaK)] − kpd3[DnaK] − kpd10[σ32: DnaK]

−kpd12[Punfold : DnaK] − kpd16[σ32: DnaK: FtsH] A27
d[Punfold ]total

dt
= kx2[Pfold ] − kpd4[Punfold ] − kx3[Punfold : DnaK]

−kpd12[Punfold : DnaK] A28

We employed the goodness-of-fit test to examine the significant difference in
the solution distribution among RS, SGA and TPS. After the searches by RS,
SGA and TPS, we calculated the frequency distribution of the solution with
respect to each kinetic parameter in the same manner as Fig. 4, and then applied
the goodness-of-fit test to the frequency distributions. We conclude that there
is a significant difference between the two frequency distributions by RS and
TPS or between those by SGA and TPS, when the goodness-of-fit test using the
frequency distributions of the solution presents p-value < 0.05.

Intrinsically the goodness-of-fit test requires the “control” frequency distribu-
tion. We employed the solution distribution obtained by RS as the control fre-
quency distribution to explore significant differences between RS and TPS. Next,
we employed the solution distribution obtained by SGA as the control frequency
distribution to explore significant differences between SGA and TPS.
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Table 6 A list of biochemical parameters (1).

State
in Eq. (1)

and Eq. (2) Component Definition

Initial
Concentration
(M)

x [σ70] σ70 6.5339 × 10−10

x [RNAP ] RNA polymerase core 2.7818 × 10−10

x [σ32] σ32 5.6533 × 10−11

x [FtsH] FtsH (protease) 9.8674 × 10−7

x [DnaK] DnaK (chaperone) 1.0117 × 10−6

x [Punfold ] Unfolded proteins 2.4860 × 10−5

x [Pg] Housekeeping gene promoters 8.5974 × 10−6

x [Ph] HSP gene promoters 7.5019 × 10−8

x [σ70:RNAP ] Holoenzyme of RNAP-bound σ70 1.8176 × 10−10

x [Pg: σ70:RNAP ] σ70:RNAP-bound promoter Pg 1.5627 × 10−6

x [RNAP : σ32] Holoenzyme of RNAP-bound σ32 1.5728 × 10−11

x [Ph:RNAP : σ32] RNAP:σ32-bound promoter Ph 1.1798 × 10−9

x [σ32: DnaK] σ32-bound DnaK 5.7193 × 10−10

x [σ32: FtsH] FtsH-bound σ32 5.5783 × 10−9

x [Punfold : DnaK] Unfolded protein-bound DnaK 2.5150 × 10−5

x [D: σ70:RNAP ] σ70:RNAP-bound D 1.8558 × 10−8

x [D:RNAP : σ32] RNAP:σ32-bound D 2.1448 × 10−7

x [RNAP : D] D-bound RNAP 3.2827 × 10−6

x [σ32: DnaK: FtsH] σ32:DnaK-bound FtsH 5.6434 × 10−8

Table 7 A list of biochemical parameters (2).

State
in Eq. (1)

and Eq. (2) Component Definition

Initial
Concentration
(M)

y [Pfold ] Folded proteins 5.0300 × 10−3

y [mRNA(σ32)] mRNA of σ32 1.5627 × 10−8

y [mRNA(DnaK)] mRNA of DnaK 3.9327 × 10−8

y [mRNA(FtsH)] mRNA of FtsH 1.5731 × 10−9

y [mRNA(Protein)] mRNA of proteins 7.6200 × 10−6

y [σ32]total Total σ32 8.2395 × 10−8

y [FtsH]total Total FtsH 1.0487 × 10−6

y [DnaK]total Total DnaK 2.6218 × 10−5

y [Punfold ]total Total Punfold 5.0010 × 10−5

Constant [G]
Molar concentration of one
molecule per cell 2.54 × 10−9

Constant [D] Nonspecific DNA binding sites 1.18 × 10−2

Constant [σ70]total Total σ70 1.778 × 10−6

Constant [RNAP ]total Total RNAP 5.08 × 10−6

Constant [Pg]total Total Pg 1.016 × 10−5

Constant [Ph]total Total Ph 7.62 × 10−8

Table 8 A list of kinetic parameters. The increase in the values of kx2 and kp1 emulates
heat shock and the response, respectively.

Parameter Definition Unit or Value

Kb1 Binding constant between RNAP and σ70 M−1

Kb2 Binding constant between Pg and σ70:RNAP M−1

Kb3 Binding constant between RNAP and σ32 M−1

Kb4 Binding constant between Ph and RNAP:σ32 M−1

Kb5 Binding constant between DnaK and σ32 M−1

Kb6 Binding constant between FtsH and σ32 M−1

Kb7 Binding constant between DnaK and Punfold M−1

Kb8 Binding constant between D and σ70:RNAP M−1

Kb9 Binding constant between D and RNAP:σ32 M−1

Kb10 Binding constant between D and RNAP M−1

Kb11 Binding constant between FtsH and σ32:DnaK M−1

kx1 Degradation constant of FtsH-bound σ32 5 min−1

kx2 Unfolding rate constant of folded proteins 75 → 150 min−1

kx3 Refolding rate constant of unfolded proteins 15000 min−1

kx4 Degradation rate constant of FtsH-bound σ32:DnaK 5 min−1

kp1 Translation rate constant for σ32 20 → 80 min−1

kp2 Translation rate constant for FtsH 20 min−1

kp3 Translation rate constant for DnaK 20 min−1

kp4 Translation rate constant for proteins 20 min−1

kpd1-kpd5,

kpd8-kpd12,

kpd14, kpd16 Protein degradation rate constant 0.03 min−1

kpd6, kpd7,

kpd13, kpd15 Protein degradation rate constant 1 min−1

km1 Transcription rate constant for σ32 20 min−1

km2 Transcription rate constant for DnaK 500 min−1

km3 Transcription rate constant for FtsH 20 min−1

km4 Transcription rate constant for proteins 1500 min−1

kmd1-kmd4 mRNA degradation constant 0.5 min−1
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N ← 0
While N < Required number of solutions:

Randomly generate parameter vector P
If Fitness(P) < AE:

Store P as a solution
N ← N + 1

End
Else if Fitness(P) < AEC:

As an initial population, create np − 1 individuals randomly in
the hypercube whose center is P and the edge length is RIG

Add P to the initial population
Generation← 1
While Generation ≤ ng:

If the minimum value of fitness in population < AE :
Store the individual that gives the minimum fitness
as a solution
N ← N + 1
Break

End
Execute selection, crossover, and mutation
Generation← Generation + 1

End
End

End
Fig. 10 Detailed algorithm of TPS. np is the population size and ng is the maximum

generation.
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