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Maximum entropy decomposition of flux distribution at steady
state to elementary modes
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Enzyme Control Flux (ECF) is a method of correlating enzyme activity and flux distribution. The advantage of ECF is that the
measurement integrates proteome data with metabolic flux analysis through Elementary Modes (EMs). But there are a few
methods of effectively determining the Elementary Mode Coefficient (EMC) in cases where no objective biological function is
available. Therefore, we proposed a new algorithm implementing the maximum entropy principle (MEP) as an objective
function for estimating the EMC. To demonstrate the feasibility of using the MEP in this way, we compared it with Linear
Programming and Quadratic Programming for modeling the metabolic networks of Chinese Hamster Ovary, Escherichia coli,
and Saccharomyces cerevisiae cells. The use of the MEP presents the most plausible distribution of EMCs in the absence of any
biological hypotheses describing the physiological state of cells, thereby enhancing the prediction accuracy of the flux
distribution in various mutants.
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A cell can be thought of as a highly efficient factory producing
biomass, energy, secondary metabolites, and other macromolecules.
The biochemical synthesis of target compounds can be analyzed and
optimized by metabolic pathway analysis or Flux Balance Analysis
(FBA) (1). FBA optimizes a special objective function to predict flux
distributions under the constraints of a stoichiometric matrix for
metabolic networks (2, 3). Metabolic pathway analysis is performed
based on Elementary Modes (EMs) or extreme pathways (4). The
development of high-throughput technologies has increased the types
of data available for such analyses. These include gene expression,
enzyme activity, flux distribution, and the intracellular concentration
of metabolites (5). Integrating these data will help describe the
mechanisms controlling various cellular behaviors (6, 7).

EMs include all of the possible and non-decomposable pathways
involved in any given metabolic network. The determined flux
distribution is the non-negative linear combination of these irrever-
sible EMs. Elementary Mode Coefficients (EMCs) are considered as the
contribution that various EMs have on diverse physiological states
(8, 9). The Enzyme Control Flux (ECF) was the first means of
correlating enzyme activities and flux distributions (10). ECF allows
for the integration of proteome data with metabolic flux analysis
through EMs.

Each set of EMCs must be determined to estimate any given flux
distribution by ECF analysis. However, the solution is complex,
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because the many different EMs vary with the objective functions
used. Certain algorithms can be used to estimate the EMCs from the
experimental flux distribution. With the α-spectrum method (11),
every EMC is maximized and minimized to represent the available
ranges of each EMC, thus the EMC is not exclusively determined.
The solutions obtained for each maximum and minimum EMC are
averaged to get the statistical mean value using linear programming
denoted as ECFLP (Enzyme Control Flux' Linear Programming) (10).

The problem is that the ECFLP has neither a biological nor a
theoretical background, despite its use for EMC estimation. There-
fore, other methods have been attempted. While it is difficult to
obtain solutions when negative values are provided for the
irreversible modes, the Moore–Penrose generalized inverse was
used for Poolman's algorithm (12, 13). When the Linear Program-
ming (LP) method was used, the maximum biomass or specific
metabolite formation was selected as the objective function (8).
The objective functions relate to the optimum physiological states,
but these are still not known for many organisms. It is possible
that Quadratic Programming (QP) could optimize EMCs by defining
the objective function as the minimal norm of the EMCs, but there
is neither a physical nor a biological background behind this
method (9).

The maximum entropy principle (MEP) is derived from Shannon's
information theory and is widely used in physics, chemistry, and
bioinformatics for gene expression (14) and sequence analysis (15, 16).
However, the MEP has rarely been implemented in metabolic flux
analysis. Here, we demonstrate the feasibility of using the MEP and a
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FIG. 1. Mean prediction errors with respect to the number of determined data for S.
cerevisiae (specific growth rate, μ=0.30 h−1), as optimized by the Maximum Entropy
Principle (MEP), Quadratic Programming (QP), Linear Programming (LP, where the
objective function was for maximum biomass formation), and Linear Programming for
the ECF (ECFLP).
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new nonlinear programming method to optimize EMCs. We used this
method to predict (I) the intracellular flux distribution caused by
external fluxes and (II) the flux distribution in cellular mutants by
integrating enzyme activities with the ECF.

MATERIALS AND METHODS

Shannon's MEP for elementary mode analysis For elementary mode analysis
of metabolic networks, a flux distribution is generally denoted as follows:

v =P � k; ð1Þ

where, P is the elementary mode matrix inwhich the rows represent the reactions, and
the columns correspond to the elementary modes; λ is the EMC vector and v is the flux
vector. P is directly derived from the associated stoichiometric matrix (4).

Shannon's Entropy (I) is defined as:

I = �
Xk
i = 1

qi logqi ð2Þ

where, ρi is the probability and
Pk
i = 1

qi = 1; i is the number of random events and k is the

total number of random events.
The central problem is defining the probability of random events to apply

Shannon's Entropy to the MEP. EMs include all possible pathways and each EM could
be regarded as a random event. Next, a suitable calculation assessing the probability
of EM should be made. Each EM excluding internal loops has an uptake reaction.
From Eq. (1), the flux of a substrate uptake reaction should be calculated as,P

i
psubstrate uptake; i �ki
vsubstrate uptake

= 1.

Based on Eqs. 1 and 2, the probability of the i-th EM in Shannon's entropy is
provided as follows:

qi =
1

vsubstrate uptake
psubstrate uptake; i � ki; ð3Þ

where, psubstrate uptake, i is the element for the substrate uptake reaction in the i-th EM in
matrix P, and νsubstrate uptake is the flux of substrate uptake.

To apply the maximum entropy principle to the optimization of EMCs, we defined a
new algorithm as,

Max�
Xne
i = 1

qi � lnqi psubstrate uptake; ip0
� �

; ð4Þ

subject to Pd � k = vd ð5Þ

kN0 ð6Þ

where, ne is the total number of EMs. The low boundary of the EMCwas set to 10−9. vd is
the vector whose fluxes are to be determined and Pd is the EM sub-matrix that consists
of rows corresponding to the determined fluxes.

All the metabolic network models were constructed using CADLIVE (17) and the
EMs were calculated by CellNetAnalyzer (18). The nonlinear optimization was
performed in Matlab (Mathworks Inc., Natick, MA, USA) using the function fmincon.

Other objective functions We used LP, QP, and ECFLP as control methods to
estimate the value of the EMCs (λoptimal). The objective functions for these are provided
below under the constraint equations (5,6). The objective function for LP (8) is defined
as follows:

Max vbiomass =
Xne
i = 1

pbiomass; i � ki; ð7Þ

where, νbiomass is the flux for biomass formation, pbiomass,i is the element in the biomass
formation reaction in the i-th EM.
TABLE 1. Intracellular flux prediction errors using LP, QP, and MEP

Models Conditions QP LP MEP ECFLP Ref.

CHO μ=0.69 d−1 1.14 − 0.64 0.69 (19)
Anaerobic 11.01 33.03 2.95 15.24 (20)

E. coli Aerobic 47.63 49.62 17.98 25.98
μ=0.15 h−1 42.19 50.65 20.66 14.92 (21)

S. cerevisiae μ=0.30 h−1 28.60 34.67 6.85 10.30
μ=0.40 h−1 22.70 14.31 9.34 5.92

B. subtilis μ=0.42 h−1

Wild-type
17.59 17.25 13.84 20.15 (22)

μ is the specific growth rate for CHO, B. subtilis, and S. cerevisiae.
The objective function of QP (9) is given as follows:

Min
Xne
i = 1

k2i ; ð8Þ

The objective function of ECFLP (10) is provided as follows:

Max=Min ki i = 1;2; N ;neð Þ ð9Þ
The optimized EMCs are defined as the mean of the maximum and minimum EMC

values.
EMA-based prediction of intracellular fluxes from the external ones To

characterize the feasibility of using our MEP method, the internal flux distributions are
predicted by extracellular fluxes. Using the objective functions, the EMCs for a
metabolic network are optimized or estimated only from the determined fluxes. The
fluxes are provided as follows:

vprediction = P � koptimal ð10Þ

where, λoptimal is the optimized EMC vector and vprediction is the estimated flux vector.
The prediction accuracy of these objective functions was evaluated by the

prediction error:

Prediction error EMAð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i = 1

vprediction;i � vexp;i
� �2

;

vuut ð11Þ

where, n is the number of fluxes in each model, and νprediction,i and νexp,i are the
predicted and experimental fluxes for the i-th reaction, respectively. We compared the
MEP method with the other algorithms, where the objective functions are the
maximum biomass formation (LP) (8), the minimal norm of EMCs (QP) (9), and ECFLP
(10).

The external fluxes of glucose, lactate, glutamine, and alanine were used for the
optimization of CHO cells (19). Several intracellular fluxes in CHO cells were determined
and others were calculated by metabolic flux analysis. The fluxes were determined by
13C tracer experiments in other models (20–21). The fluxes of glucose and acetate, and
glucose, acetate, ethanol, lactate and succinate were used for the aerobic and anaerobic
conditions of E. coli, respectively (20). The determined fluxes for S. cerevisiae included
glucose, ethanol, acetate, and glycerol (21). The uptake flux of glucose and the external
fluxes of riboflavin, acetoin, acetate, and lactate were used for the EMC optimization of
Bacillus subtilis (22). Details of the network data are shown in Supplementary data.

ECF-predicted flux distribution for mutants ECF integrates enzyme activity
data into the EMCs to estimate the flux distribution of mutants. Details of the algorithm
are described elsewhere (10). Briefly, the EMCs for the wild-type cells were optimized
by LP, QP, MEP, and ECFLP (Eqs. 4–9). Then, the EMCs of mutants were calculated as
follows:

kmutant
i = g � kwi j

ne

j = 1
aj;i ð12Þ

where, λi
w is the i-th EMC for wild-type, which corresponds to the i-th element of

λoptimal provided by Eqs. 4–9, and λi
mutant is that for a mutant. γ is the parameter to

adjust the flux of uptake reaction of a mutant to the determined value for wild-type. αj,i
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is the parameter for the enzyme activity of the j-th reaction, as defined by the following
equation.

aj;i =
aj if pj;ip0

� �
1 if pj;i = 0

� �
�

ð13Þ

where, aj is the relative enzyme activity of the mutant to the wild-type for the j-th
reaction. pj,i is the element for the j-th reaction and i-th EM in matrix P. The flux
distribution of the mutant could be predicted as follows:

vmutant
prediction = P � kmutant ð14Þ

where, λmutant= (λi
mutant) and vpredictionmutant = (vprediction,imutant ). The prediction errors of the

estimated fluxes for mutants could be calculated by the following equation.

Prediction error ECFð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i = 1

vmutant
prediction;i � vmutant

exp;i

� �2
;

vuut ð15Þ

where, vprediction,imutant and vexp,i
mutant are the predicted and experimental fluxes of mutants for

the i-th reaction, respectively.
The ECF algorithmwas applied to estimate the EMCs from the fluxes determined for

wild-type E. coli (10, 23, 24) and B. subtilis (22), where the enzyme activity profiles were
measured. Use of ECF predicted the flux distributions of the pyk, ppc, fnr, and cra
mutants of E. coli, as well as those for the als over-expressing and pta knockout mutants
of B. subtilis. Details of the network data are shown in Supplementary data.

RESULTS

Feasibility of using the MEP to estimate flux distributions by
elementary mode analysis External fluxes were used to predict
intracellular fluxes for three cellular metabolic network models (CHO,
E. coli, S. cerevisiae, and B. subtilis) using the LP, QP, ECFLP, and MEP-
FIG. 2. The Elementary Mode Coefficients (EMCs) for S. cerevisiae (specific growth rate, μ=0.3
(QP), Linear Programming (LP, where the objective function was for maximum biomass forma
based algorithms. Determining intracellular fluxes from observed
external fluxes is difficult (25). Gas Chromatography–Mass Spectro-
metry (GC–MS) or Nuclear Magnetic Resonance (NMR) is commonly
used to derive experimental data in the absence of a 13C tracer (26).
The prediction accuracy of the four algorithms used in our work is
shown in Table 1. The prediction error of the MEP or ECFLP algorithm
is lower than observed when using LP or QP. These data indicated that
using the MEP was a feasible alternative.

A number of the measurable external fluxes are critical for the
optimization of EMCs, but in most cases the measurable external
fluxes are a limiting factor. We examined how the amount of available
flux data affected the optimization of EMCs for S. cerevisiae. Using a
specific growth rate (μ) of 0.30 h−1, we compared the prediction
capacity for four objective functions, LP, QP, ECFLP, and MEP. The
uptake reaction is the reference value for the metabolic model so that
it could be fixed for all of the calculations. For example, the uptake flux
of glucose was fixed, as well as others that were randomly selected
from the external fluxes.

If two experimental data values were examined for the optimiza-
tions, these were chosen from acetate, ethanol, and glycerol. There
were three possible outcomes in this situation. As shown in Fig. 1, the
prediction error decreased with an increase in the number of external
fluxes used for the optimization. The predicted mean errors using
ECFLP andMEP aremuch lower than those for LP andQP. Therefore,we
determined that ECFLP and MEP are effective for EMC determination.

The optimized EMC profiles using LP, QP, ECFLP, and MEP for S.
cerevisiae (μ=0.30 h−1) are shown in Fig. 2. There were several
dominant EMs whose EMCs were large in all four cases. The dominant
0 h−1), as optimized by the Maximum Entropy Principle (MEP), Quadratic Programming
tion), and Linear Programming for the ECF (ECFLP). (A), MEP; (B), QP; (C), LP; (D), ECFLP.
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EMCs were dependent on the objective function. The EMC profiles of
ECFLP and MEP are similar, but different from those derived using LP
and QP.

We compared the predicted with the experimental flux to further
investigate the accuracy of each objective function. As shown in Fig. 3,
ECFLP and MEP predicted each flux more accurately than did LP and
QP. This supported our hypothesis that MEP and ECFLP are useful
optimization methods. The MEP and ECFLP estimated flux distribu-
tions and EMC profiles were similar. The largest prediction error was
for CO2 excretion by LP and QP. This error was suppressed in our MEP
and ECFLP analysis. CO2 is mainly produced by the tricarboxylic acid
cycle in our cellular models.

Application of the MEP to the ECF Provided that there is
sufficient enzyme activity in both wild-type and mutant cells, the ECF
can be used to estimate the flux distribution in the mutants. We used
the ECF to predict the flux distribution of four E. coli mutants and one
mutant of B. subtilis using different objective functions as shown in
Figs. 4 and 5. The prediction error obtained by LP was the lowest for
the ppc mutant (Fig. 5), suggesting that LP was most effective if the
exact biological objective function was provided. For the other
mutants, where the exact objective functions were not available,
ECFLP and MEP predicted the flux distributions more accurately than
both LP and QP. This finding supported the concept that MEP and
ECFLP are effective optimization methods of the ECF where no
biological objective function is available. These data also suggest that
the experimental flux distribution was similar to the flux distribution
estimated by MEP.
FIG. 3. The predicted fluxes versus experimental fluxes for S. cerevisiae (specific growth rate
Quadratic Programming (QP), Linear Programming (LP, where the objective function was for
MEP; (B), QP; (C), LP; (D), ECFLP.
DISCUSSION

Generally, an additional hypothesis or an objective function is
necessary to estimate the EMC as shown in equations (4, 7, 8, 9). With
LP, an objective function is derived based on the concept that an
organism can reach a predicted state, such as maximum biomass or
ATP production (8). But it is difficult to deduce the rules for these set
situations because objective functions can vary between different
organisms and physiological conditions. In addition, mutants often
reach a suboptimal state after gene deletion, thus maximum biomass
formation, is not always a good choice for metabolic flux analysis (27).
QP, in contrast, employs the minimum normal solution for EMCs, is
suitable for systems whose objective function cannot be defined in
biological terms. However, it should be noted that a sufficient number
of measurable fluxes are required to fit the actual flux distribution of
the system. Significantly, whileWlaschin's algorithm could not predict
all of the intracellular fluxes (25), a linear relation was observed
between EM combustion entropies and the EM family weight factors
as estimated by the combustion thermodynamics of biochemical
molecules.

To overcome these challenges, we proposed to demonstrate that
the MEP, which maximizes Shannon's entropy, could effectively be
applied to elementary mode and ECF analyses. Shannon's entropy is
called the information entropy and is a measure of system complexity.
The most possible distribution of random events is obtained by
maximizing it. In biological sciences, this function has been widely
used for analyses involving genes, RNA, and protein in living systems
, μ=0.30 h−1). The fluxes were optimized using the Maximum Entropy Principle (MEP),
maximum biomass formation) and Linear Programming to obtain the ECF (ECFLP). (A),



FIG. 4. Flux distributions for pykF(A), ppc (B), fnr (C), and cra (D) in E. colimutants, as well as als over-expressing and pta-deletion mutants of B. subtilis (E) with ECF calculations using
the objective functions for ECFLP, MEP, QP, and LP.
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(28). Our data indicated that using the MEP accurately estimated the
flux distribution when compared with other existing methods. This
finding indicated that the MEP is a suitable objective function for
estimating a flux distribution. This result may also suggest that the
experimental flux distribution approximates the probability distribu-
tion provided by the MEP in a random system. When thinking of
extremes, if the most likely probability distribution is conserved in
mutants or any set of environmental conditions, the MEP might be a
universal principle for metabolic flux analysis. Our future work will
examine this intriguing concept.
We observed that EMCs and flux distributions optimized by MEP
and ECFLP were very similar, but quite different from those predicted
using LP and QP. We believe this similarity results from the fact that
both the MEP and ECFLP are based purely on statistics and have no
biological bias. The MEP derives the most probable distribution of
EMCs based on Shannon's information theory. ECFLP, on the other
hand, explores all possible EMC vectors, calculating their mean as a
final solution for each EMC. However, note that ECFLP is not
theoretical but empirical. Although we observed that the prediction
error obtained using the MEP was almost the same as that for ECFLP,



FIG. 5. ECF prediction errors using objective functions for ECFLP, MEP, QP, and LP to
describe the pyk, ppc, fnr, and cra mutants of E. coli, as well as the als over-expression
and pta deletion mutants of B. subtilis.
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we consider the value obtained using the MEP to be superior because
the MEP derivation is based on a straight forward formula and a
theoretically sound background (Shannon's information theory).
Because of its capacity for theoretical prediction, the MEP can predict
the most likely probability distribution for metabolic fluxes but ECFLP
cannot.

Shannon's information entropy is a measure of the average
information content missing in a system. Therefore, compared to LP,
the MEP needs neither additional experimental information nor a
biological objective function. Generally it is difficult to predict a
suitable biological objective function for different mutants and growth
conditions. But the MEP is a physical rule predicting random events
without any need of additional biological hypothesis or objective
functions. Therefore, it is reasonable to choose the MEP to optimize
EMCs when no biological objective function is used.
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