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Use of maximum entropy principle with Lagrange multipliers extends
the feasibility of elementary mode analysis
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Elementary mode (EM) analysis is potentially effective in integrating transcriptome or proteome data into metabolic
network analyses and in exploring the mechanism of how phenotypic or metabolic flux distribution is changed with respect
to environmental and genetic perturbations. The EM coefficients (EMCs) indicate the quantitative contribution of their
associated EMs and can be estimated by maximizing Shannon's entropy as a general objective function in our previous study,
but the use of EMCs is still restricted to a relatively small-scale networks. We propose a fast and universal method that
optimizes hundreds of thousands of EMCs under the constraint of the Maximum entropy principle (MEP). Lagrange
multipliers (LMs) are applied to maximize the Shannon's entropy-based objective function, analytically solving each EMC as
the function of LMs. Consequently, the number of such search variables, the EMC number, is dramatically reduced to the
reaction number. To demonstrate the feasibility of the MEP with Lagrange multipliers (MEPLM), it is coupled with enzyme
control flux (ECF) to predict the flux distributions of Escherichia coli and Saccharomyces cerevisiae for different conditions
(gene deletion, adaptive evolution, temperature, and dilution rate) and to provide a quantitative understanding of how
metabolic or physiological states are changed in response to these genetic or environmental perturbations at the elementary
mode level. It is shown that the ECF-based method is a feasible framework for the prediction of metabolic flux distribution by
integrating enzyme activity data into EMs to genetic and environmental perturbations.
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Metabolic engineering is successfully applied to the synthesis and
analysis for productions of biofuels, pharmaceuticals, and other
products (1). In silico simulation is an important tool. Flux Balance
Analysis (FBA) (2) could predict physiological behaviors in genome
scale for Escherichia coli, while the employed objective function
including maximum molar yield (biomass or other) was not always
suitable (3). A new modeling framework for metabolic networks is
required for integration of the experimental data from genomics,
transcriptomics, proteomics, metabolomics, and fluxomics, which are
determined by high-throughput technologies.

A few methods have been proposed for integration of omics
data into constraint-based flux analysis (4–6). A problem common
to those studies is that transcriptional regulations or gene
expressions are given as the Boolean logic. It shows only two
states for genes, expressed or not, while gene expression profiles are
changed in a large range with respect to genetic or environmental
perturbations.

Elementary mode (EM) analysis is potentially effective in corre-
lating transcriptome or proteome data to their associated metabolic
ional files including the programs are freely available on our homepage:
dlive.jp/JBB/suppl.htm.
ing author. Tel./fax: +81 948 29 7828.
ress: kurata@bio.kyutech.ac.jp (H. Kurata).

- see front matter © 2010, The Society for Biotechnology, Japan. All
j.jbiosc.2010.01.015
network architecture or flux distributions (7–10). To establish a
linkage between gene expression profile and metabolic network
structure, several approaches were proposed based on elementary
modes (EMs), which are all of the possible and non-decomposable
pathways in a steady-state biochemical network (11, 12). Control
Effective Flux (CEF) was developed to predict the change in
transcriptional regulations (7). A modified CEF (mCEF) was presented
to predict how gene expression profiles are changed with respect to
various types of genetic modifications (10). Enzyme control flux (ECF)
was proposed to integrate enzyme activity data into EMs in a
multiplication formula for estimating the flux distributions of genetic
mutants of E. coli and Bacillus subtilis (8). ECF is currently a promising
algorithm that quantitatively correlates gene or protein expression
profiles to their associated metabolic flux distributions.

In ECF, maximum entropy principle (MEP) was employed to
optimize the EMCs (9). MEP is a universal principle established based
on Shannon entropy (13) when insufficient information is available. A
problem for EM-based analyses is calculation complexity, which
makes it difficult to estimate EMCs for a moderate or large-scale
metabolic model (9, 14). To obtain reliable EMCs, we propose theMEP
algorithm coupled with Lagrange Multipliers (LMs), which is named
MEPLM.MEPLM readily optimizes hundreds of thousands of the EMCs
in large-scale networks under different types of environmental and
genetic perturbations, such as temperature (15), dilution rates (16),
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oxygen supply, osmotic pressure, substrate concentrations, gene
deletion or addition, and partially deficiency or overexpression of
enzymes. The feasibility of MEPLM is demonstrated by applying it to
ECF-based flux estimation and to EM-based analysis of physiological
states.

MATERIALS AND METHODS

Metabolic network models Themetabolic networkmodels in detail are shown
in Table 1. The metabolic network models of E. coli (Figure S1) were revised from the
model registered in CellNetAnalyzer (Table S1). Model I includes reaction 1–6, 8, 11,
13–35, 38–50, 52–100, 103–159 (the reaction number is shown in Table S1); model II
includes reaction 1–100, 103, 104, and 107–159; model III includes reaction 1–104 and
107–159; model IV includes reaction 1–5, 7– 104, and 107–159. There are 106 reactions
and 136,086 EMs in the metabolic network of Saccharomyces cerevisiae, including
central carbon metabolism with amino acid syntheses, as shown in Table S2 and Figure
S2. The flux distributions and enzyme activities data for S. cerevisiae were obtained
from Tai et al. (15). The experimental flux distributions for E. coli were determined by
13C tracer experiments (16–19).

Maximum entropy principle algorithm for evaluation of EMCs Generally,
the flux distribution at steady state can be decomposed onto EMs (12):

Pd � k = vd: ð1Þ

Pd is the sub-matrix of EM matrix P in which the rows represent the reactions with the
determined fluxes and the columns correspond to the elementary modes. λ is the EMC
vector and vd is the flux vector for the determined reactions.

In our previous studies (9), the probability of EM was presented as.

qi =
1

vsubstrate uptake
psubstrate uptake; i � ki

Xn
i=1

qi = 1

 !
; ð2Þ

where vsubstrateuptake is the flux for substrate uptake, psubstrateuptake,i is the element of the
ith EM, n is the number of EMs. It assumes that contribution of the internal loops
(psubstrateuptake,i=0) is neglected based on loop law thermodynamic constraints (20). In
the employed metabolic network model of E. coli, the internal loop has two reactions,
sdh and frd. For S. cerevisiae, there are two internal loops: one includes mdh, mdh2, and
shuttlex, and another one is composed of osm and sdh. ρi is provided by solving the
following optimization problem:

Maximize −
Xn
i=1

qilogqi; ð3Þ

s:t:
Xn
i=1

qi = 1 ð4Þ

Xn
i=1
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where vr is the rth determined flux; m is the number of the determined fluxes. X(xij) is
the new matrix converted from EM matrix Pd, given by:

xr; i =
vsubstrate uptake

psubstrate uptake; i
pr; i if psubstrate uptake; i p 0

� �
0 if psubstrate uptake; i = 0

� �
8<
: ð6Þ

The Shannon's entropy (Eq. (3)) should be maximized to provide a most probable
distribution of ρi under the constraints (Eqs. (4) and (5)). A problem of this
optimization is that it is hard to estimate ρi at a large-scale network model due to a
huge number of n.

MEP coupled with the Lagrange multipliers In this study, to overcome the
above limitation, the method of Lagrange multipliers is proposed for converting the
optimization problem (Eqs. (3)–(6)), whereby the number of the search variables
TABLE 1. Details for metabolic network models fo

Model I II

O2 Aerobic Anaerobic
Substrates Glucose Glucose
Products Acetate, CO2 Acetate, ethanol, succinate,

formate, lactate, CO2

Ace
glyc

Total number of reactions 149 155
EMs 30579 98338
Calculation time (s) 48 264

a The determined fluxes are limited, so the optimization is performed quickly.
(EMCs) (n) is greatly reduced to that of the determined fluxes (m). The Lagrange
function is provided by:
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where φi (i=0,1,2…,m) is the Lagrange multiplier for constraints. If we let φ0=log
Z–1, then
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The nonlinear equation (11) for φ could be solved by mmfsolve in Matlab (21).
The probabilities (ρi) and EMCs (λi) of the ith EMs are calculated as follows:
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Enzyme control flux coupled with maximum entropy principle with Lagrange
multiplier method (ECF-MEPLM) In enzyme control flux (ECF), the steady-state
flux distribution of a reference type is defined by:

vref = P � kref ; ð14Þ

where the element of λref are the EMCs of a reference model, optimized under the MEP
constraint. Here, ECF calculates the EMCs of a target model. The EMC of the ith EM for a
target model λi

target is presented by:

ktargeti = g � krefi

Ymr

j=1

aj;i; ð15Þ

where λi
ref is the EMC of the ith EM for the reference model; aj,i is the parameter for

the enzyme activity of the jth reaction; mr is the number of reactions in metabolic
models; γ is a parameter to adjust the flux of the substrate uptake reaction of the
target to the determined value for the reference type. The enzyme activity parameter
is defined as:

aj; i =
aj if pj; i p 0

� �
1 if pj; i = 0

� ��
ð16Þ

aj is the relative enzyme activity of the target to the reference model for the jth
reaction, which is the experimental data. pj,i is the element for the jth reaction and ith
EM in EM matrix P. The flux distribution of the target model is predicted by:

vtarget = P � ktarget: ð17Þ

Detailed explanation is described elsewhere (8).
r E. coli (I, II, III, and IV) and S. cerevisiae (V).

III IV V

Anaerobic Anaerobic Aerobic
Glucose Glucose Glucose

tate, ethanol, succinate,
erol, formate, lactate, CO2

Acetate, ethanol, succinate,
glycerol, formate, lactate, CO2

Acetate, ethanol,
glycerol, CO2

157 156 106
321416 122126 136086
1674 417 32a



TABLE 2. Speed and accuracy for the calculation of flux distributions for S. cerevisiae.

Specific
growth rate

Running time (s) Calculation accuracy

MEP MEPLM MEP MEPLM

μ=0.15 h−1 20.41 0.28 5.75 5.75
μ=0.30 h−1 19.07 0.13 7.44 7.40
μ=0.40 h−1 24.50 0.16 2.46 2.46

Calculation accuracy is defined by Eq. (18). The metabolic model is shown elsewhere
(9). There are 62 EMs.
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Prediction accuracy The prediction errors in the flux distributions estimated
by ECF, ECF-MEPLM, or ECF-B are calculated by:

Prediction error =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i=1

vi;prediction−vi;exp
� �2vuut ð18Þ

where vi,prediction is the predicted flux for the ith reaction; vi,exp is the experimental data
of the ith reaction; m is the number of the determined fluxes.

Control method ECF-B is a control method for ECF. In ECF-B, the determined
enzyme activity parameters were replaced by the binary Boolean states: the activity of
a deleted enzyme is set to zero and the others are set to one. The EMCs of a target model
are calculated in the same manner as ECF.

Implementation EMs were calculated by CellNetAnalyzer (22). The optimiza-
tion of EMCs and the prediction of the flux distribution were implemented in MATLAB
(Mathworks Inc., Natick, MA). The employed computer for the simulation is Dell-
Optiplex 755 (Intel-R Core-TM 2 Duo; CPU 2.33 GHz; Memory-RAM, 2.00 GB).

RESULTS

Validation of maximum entropy principle with Lagrange
Multipliers (MEPLM) Shannon's entropy is a physical measure of
the average information content of random events occurring in a
system. Use of MEP presented a most probable distribution of EMCs in
the absence of any biological hypotheses describing the physiological
state within cells (Eqs. (1)–(6)) (9). MEP is different from typical
objective functions. Typically, the prediction accuracy under such
biologically specific objective functions depends on environmental
and genetic conditions (3). On the other hand, optimization under the
MEP constraint predicts the EMCs with relatively high accuracy under
a variety of environmental and genetic conditions (9, 23). Particularly,
MEP is a reasonable choice in the cases where biological objective
functions are not specifically defined.
FIG. 1. A flow chart of ECFLM. The white square boxes are given; the grey square box is
predicted. The ovals are algorithms.
The distributions of EMCs optimized by linear programming with
maximum biomass formation or by minimization of the squared
sum of EMCs have much more zero values than those by MEP (9). It
suggests that MEP explores a most probable distribution without
any biases deriving from the specific objective functions, while use
of those specific functions would make the distribution of EMCs
narrow.

A problem of EMC optimization under the MEP constraint is
that the number of EMCs exponentially increases with an increase
in network size (24). To circumvent this problem, we propose the
MEPLM algorithm. Use of it remarkably decreases the number of
the variables to that of metabolic fluxes. The feasibility of MEPLM
FIG. 2. Flux prediction for E. coli gene deletion mutants by ECF-MEPLM. Upper panel
(A, B): the flux distributions are predicted by ECF-MEPLM and ECF-B under aerobic
conditions for two gene deletion mutants in E. coli: (A) pykF; (B) sucA. Model I shown
in Table 1 was used and the predicted flux distributions were compared with 20 (A)
and 24 (B) experimental fluxes. Thirteen (A) and eighteen (B) relative enzyme activity
data of mutants to wild type were used for the calculation by ECF-MEPLM. Lower
panel (C): the prediction errors by ECF-MEPLM (grey) and ECF-B (black) are
calculated for the above mutants (A, B).



FIG. 3. Flux prediction for E. colimutants undergoing adaptive evolution. Upper panel (A–D): the flux distributions are predicted by ECF-MEPLM and ECF-B for the E. coli gene deletion
mutants undergoing adaptive evolution under anaerobic conditions: (A) pta-pfkA gene knockout mutant, evolved 30 days; (B) pta-pfkA gene knockout mutant, evolved 60 days; (C)
pta-adhE-pfkA-glk gene knockout mutant, evolved 30 days; (D) pta-adhE-pfkA-glk gene knockout mutant, evolved 60 days. Model III shown in Table 1 was used for the pta-pfkA gene
knockout mutant and model IV was used for the pta-adhE-pfkA-glk gene knockout mutant. The predicted flux distributions were compared with 26 (A and B) and 25 (C and D)
experimental fluxes. Five relative enzyme activity data of adapted cells to the starring (reference) cells were used for the calculation by ECF-MEPLM. Lowe panel (E): the prediction
errors are calculated for ECF-MEPLM (grey) and ECF-B (black) for the above E. coli gene deletion mutants (A–D).
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is validated using a plain metabolic model for S. cerevisiae, as
shown in Figs. S3–S4 and Table 2, where the experimental flux
distribution was determined by 13C trace technology (25). When
seven fluxes were given, the EMCs and flux distribution were
readily estimated by MEPLM. Use of LMs enhanced the calculation
speed by more than 100-fold but never deteriorated the prediction
accuracy of the flux distributions (Eq. (18)). These results de-
monstrate that MEPLM is very effective in the fast and accurate
optimization of EMCs.

A link between enzyme profiles and flux profiles by ECF-MEPLM
in genetic mutants ECF correlates the relationship between an
enzyme activity profile and its associated flux distribution (Eqs. (14)–
(17)) (8). Assuming that the flux passing through each EM is
synergistically affected by all enzyme activities that belong to the
EM, a multiplication formula is used to integrate all enzyme activities
into the EMs. The ECF model neither considers any allosteric kinetics
nor reduces large-scale network analysis to local one. Despite such
plain ideas, ECF predicts how the change in enzyme profiles affects the
flux distribution. This indicates that the total change in an enzyme
activity profile plays a major role in determining flux distributions or
the flux distribution would be determined by the effects of multiple
enzyme activities rather than by a few rate-limiting reactions. A
bottleneck of ECF is that it is available only to a small-scale metabolic
network (8, 9, 23).

To extend the coverage of ECF, ECF is coupled with MEPLM to
predict how the change in an enzyme activity profile alters the flux
distributions in large scale metabolic networks of gene deletion
mutants, as shown in Figure S1 (E. coli) and Figure S2 (S. cerevisiae).



FIG. 4. Predicted flux distribution for temperature perturbation. The flux distribution is
predicted by ECF-MEPLM in S. cerevisiae when the cultivation temperature decreases
from 30 to 12 °C. Model V was used and the predicted flux distribution were compared
with 12 experimental fluxes. Eleven relative enzyme activity data at 12 to at 30 °C were
used for the calculation by ECF-MEPLM.

FIG. 5. Flux prediction for dilution rate change. Upper panel (A, B): the flux distribution
is predicted by ECF-MEPLM and ECF-B for E. coli when the dilution rate changes from
0.1 h−1 to (A) 0.32 h−1 or (B) 0.55 h−1. Model I shown in Table 1 was used and the
predicted flux distribution was compared with 19 experimental fluxes. Three relative
enzyme activity data of at 0.32 h−1 or 0.55 h−1 to at 0.1 h−1 were used for the
calculation by ECF-MEPLM. Lower panel (C): the prediction errors are calculated for
ECF-MEPLM (grey) and ECF-B (black) for the above conditions (A, B).
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This coupling method is named ECF-MEPLM and its algorithm chart is
shown in Fig. 1. The resultant predicted fluxes in two gene deletion
mutants of E. coli (17, 18) are shown in Fig. 2. A reference method
(ECF-B) uses the Boolean logic instead of the real enzyme activity
profiles. ECF-MEPLM provided a high correlation between an enzyme
activity profile and its associated flux distribution, compared with
ECF-B. ECF-MEPLM takes an advantage in the use of the overall
changes in enzyme activities.

Here, we compare the performance of ECF-MEPLM with that of
typically used methods: FBA (2) and Minimization of Metabolic
Adjustment (MOMA) (26). In FBA and MOMA, the flux related to
gene deletion is set to zero and the flux distributions of gene deletion
mutants are optimized by a specific biological function and by
quadratic programming, respectively. The hypothesis in MOMA is the
minimal flux adjustments between a mutant and wild type, assuming
the robust property of a metabolic flux distribution. In principle, they
do not use any enzyme activity profile caused by genetic modifica-
tion but only reflect the change in the stoichiometric matrix. ECF-
MEPLM is confirmed to take an advantage in the use of an enzyme
activity profile and to accurately estimate the flux distributions
(Figure S5). Note that we have no intention that ECF-MEPLM
indicates a higher capability to predict flux distributions than
MOMA and FBA, because ECF-MEPLM uses an enzyme activity profile
whereas they do not. ECF-MEPLM presents a mathematical model
that precisely correlates an enzyme activity profile to its associated
flux distribution.

ECF-MEPLM in environmental changes The metabolic phe-
notype for genetically modified mutants can be improved after
adaptive evolution process. The productive capabilities of lactate
were enhanced by adaptive evolution in E. coli mutants after the
cultivation of 1000 generations (27). The ECF-MEPLM-predicted flux
distributions of two mutants of E. coli evolved in 30 days and 60
days are shown in Fig. 3, where the ratios of the enzyme activity
profile of adapted cells to that of the starting cells (reference cells)
were introduced to the optimized EMCs of the starting cells. The
predicted flux distributions by ECF-MEPLM were consistent with the
experimental data (19) and the prediction errors were low. These
results show that ECF-MEPLM is effective in estimating a quantita-
tive correlation between an enzyme activity profile and its
associated flux distribution in adaptation stages. Note that neither
MOMA nor FBA is available for this experiment because the
stoichiometric matrix does not change during the adaptive evolution
process.

Next, ECF-MEPLM was applied to estimating how the change in
an enzyme activity profile alters its associated flux distribution with
respect to the temperature perturbation in S. cerevisiae. The
cultivation temperature decreased from 30 to 12 °C (15). The
reference EMCs were evaluated by MEPLM with the flux distribu-
tion at 30 °C. Then ECF predicted the flux distribution at 12 °C using
the relative change of the enzyme activity profile at 12 °C to that at
30 °C. The in vivo enzyme activities are changed greatly in response
to the decrease in temperature. The predicted result coincides with
the experimental fluxes, as shown in Fig. 4. The prediction error is
almost the same as that by ECF-B (data not shown).

Finally, the flux distribution of E. coliwas predicted by ECF-MEPLM
when the dilution rate was changed from 0.10 to 0.32 and 0.55 h−1



FIG. 7. EMC distribution of elementary modes. The EMC spectrums evaluated byMEPLM
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(16). MEPLM evaluated the reference EMCs from the flux distribution
at the dilution rate 0.10 h−1. Then ECF-MEPLM predicted the flux
distribution at a dilution rate of 0.32 or 0.55 h−1 using the relative
change of the enzyme activity profile at 0.32 or 0.55 h−1 to that at 0.10
h−1. The predicted flux distributions and prediction errors for
different dilution rates are shown in Fig. 5. The predicted flux
distributions are consistent with the experimental ones. Since the
prediction error decreases by incorporating an enzyme activity
profile, ECF-MEPLM successfully incorporates the overall changes in
enzyme activities into EMCs.

In summary, use of MEPLM greatly extends the coverage of ECF,
although the originally developed ECF is restricted to small-scale
networks (8–9). Consequently, ECF-MEPLM is demonstrated to
correlates an enzyme activity profile to its associated metabolic flux
distribution under different types of genetic and environmental
perturbations.

Analysis of physiological states by ECF-MEPLM Generally, the
macroscopic behavior of complex systems can be attributed to a
collection of microscopic states (28). A metabolic flux distribution is
one of the macroscopic properties for a biological system; EMs could
be regarded as intracellular microscopic structures. The macroscopic
behavior, a flux distribution, could be evaluated by the sum of each
microscopic state. In this section, the changes in physiological states
are characterized by using the most probable distribution of the EMCs
optimized ECF-MEPLM (Eq. (3)).

We demonstrate that the EMC profile is effective in the analysis of
the physiological sates of metabolic networks. The physiological
states in E. coli were analyzed under aerobic and anaerobic
conditions, as shown in Table 1 (29). The pathway length distribu-
tions for two conditions, calculated by CellNetAnalyzer (22), were
FIG. 6. Pathway length distribution. Model I shown in Table 1 was used for the pathway
length distribution of E. coli under aerobic conditions (A) and model II was used for the
analysis under anaerobic conditions (B).

for E. coli under aerobic conditions (A) and anaerobic conditions (B). Model I andmodel
II were used for aerobic and anaerobic conditions, respectively.
shown in Fig. 6. There are two groups of EMs denoted as groups I and
II. Group I, in which the EMs have short pathway length, is mainly
related to the ATP and product formations, while there is no EM
related to growth. Group II consists of the EMs with long pathway
length. All the EMs related to biomass formation are involved in
group II. This classification was the same as discussed by Gagneur
and Klamt (30). Under aerobic conditions, the pathway lengths are
from 20 to 36 in group I; they are from 130 to 135 in group II. Under
anaerobic conditions, the pathway lengths vary from 13 to 37 in
group I and they range from 128 to 138 in group II. Most of the EMs
are involved in group II under both the aerobic and anaerobic
conditions.

Next, the EMC distributions under aerobic and anaerobic
conditions are evaluated by MEPLM, as shown in Fig. 7. The EMC
distributions are rather different between both the conditions,
although the pathway length distributions are relatively similar
(Fig. 6). Under anaerobic conditions, the number of the dominant
EMs is limited and their overall reactions are shown in Table 3.
There are four EMs in each subgroup of the dominant EMs, which
are related to the formation of ethanol and lactate; some of them are
coupled with ATP drain. EMs that have the same overall reaction
stoichiometry can be grouped into one EM family (31). The EMC
TABLE 3. Overall reactions for the dominant EMs for E. coli under anaerobic conditions.

No. Over all reaction No. of EMs EMCs

1 Glucose→2 ethanol+2 CO2 37194, 37208, 37210, 37212a 2.4890
2 Glucose→2 lactate 37225, 37237, 37239, 37241a 1.3272
3 Glucose→2 ethanol+2 CO2 37193, 37207, 37209, 37211a 0.9738

a There are 98338 EMs for the metabolic network model under anaerobic conditions.
The three EMs, 37212, 37241, and 37211, are also related to ATP drain, while the mass
balance remains for the overall reactions.



FIG. 8. EMC distribution with respect to pathway length. EMC evaluated by MEPLM
versus pathway length for E. coli under aerobic conditions (A) and anaerobic conditions
(B). Model I and model II were used for aerobic and anaerobic conditions, respectively,
as shown in Table 1.
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subgroup belonging to the same EM family (1, 3 in Table 3) are not
consistent: the EMCs of one subgroup are 2.489 and those of the
other 0.9738. There are amounts of alternative pathways in
metabolic networks with same overall reactions. It ensures that
metabolic networks are not destroyed by genetic and environmental
perturbations. On the other hand, there are hundreds of dominant
EMs under aerobic conditions as shown in Fig. 7. The largest EMC is
approximately 0.32 under aerobic conditions, whereas it is 2.5 under
anaerobic conditions. Many reactions are involved in cell metabo-
lism under aerobic conditions, because the EMC profile is much
scattered.

The relationship between the EMCs and pathway lengths are
shown in Fig. 8. In general, the pathway length of biomass formation is
long, because it includes many reactions for amino acids, DNA, and
RNA syntheses. The pathway length of ethanol and lactate produc-
tions is short, as they belong to glycolysis and pyruvate metabolism.
The pathway length of the largest EMC is 132 under aerobic
conditions, while it is less than 20 under anaerobic conditions. This
result shows that physiological states are clearly different between
under both the conditions. Biomass formation is active under aerobic
conditions, while ethanol/lactate formation and ATP drain aremajorly
active under anaerobic conditions. The changes in physiological states
with respect to oxygen supply are characterized by those in the EMC
profiles optimized by MEPLM.

DISCUSSION

ECF with MEP presents a quantitative and phenomenological
relationship between enzyme activity data and the associated flux
distribution without any biologically specific objective functions
(8, 9). MEP can be a reasonable or standard choice in cases where
biological objective functions are not specified. However, ECF-MEP (9)
is not suitable for large-scale metabolic networks. To overcome this
problem, MEPLM is proposed, where the number of the search
variables is greatly reduced from the number of EMs to that of the
determined fluxes. MEPLM enables estimating hundreds of thousands
of EMCs in a large-scale metabolic network, under different types of
environmental and genetic changes. Since MEPLM greatly extends the
coverage of EM analysis, it can be a standard objective function,
especially in cases where specific objective functions are not available.

While ECF-MEPLM is a non-mechanistic model that considers
neither detailed enzyme kinetics, such as allosteric binding of
inhibitors and activators, nor the concentrations of substrates (8,9),
it effectively makes use of an enzyme activity profile for estimating
its associated flux distributions in large-scale metabolic networks. A
high correlation between an enzyme activity profile and its asso-
ciated flux distribution is shown under different environmental and
genetic perturbations. In addition, the calculation of the EMC
distributions identifies the physiological states under aerobic and
anaerobic conditions. Use of MEPLM greatly enhances the feasibility
of EM-based analyses: integration of enzyme profile data into
metabolic flux distributions under different types of genetic and
environmental perturbations and identification of the physiological
states of metabolic networks.

Generally, metabolic flux distributions are very informative to
analyze the physiological state of microorganisms, e.g., cell growth
and biosynthesis, while flux distribution data are not abundant in
human cells, compared with proteome and transcriptome data, due to
experimental complexity. It is critically important to predict flux
distributions from available transcriptome and proteome data and to
characterize the physiological state of disease cells. ECF-MEPLM
coupled with such omics data is expected to classify the steady-state
flux space, resulting in a characterization of all feasible steady-state
flux distributions: normal physiological condition, diabetic condition,
ischemic condition, diet condition, providing a basis for the quan-
titative analysis or diagnosis of metabolic diseases and prediction of
effects of potential disease treatments.

The size of networks analyzed by ECF-MEPLM may be more
enlarged to cope with a genome-scale model. Since the number of
EMs increases exponentially with the network size, it may be still hard
to explore EMCs at genome-scale networks with more than several
hundreds of reactions due to combinatorial explosion. It is the
bottleneck problem for the application of EMs while FBA is available
for genome-scale networks. A fewmethods, which divide the network
into subsystems by redefining internal and external metabolites or
improve the algorithm deriving EMs from a stoichiometric matrix
(32,33), have been proposed to reduce calculation complexity, but
they have not been fully established yet.
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