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ABSTRACT 
Motivation: Gene deletion and over-expression are critical tech-
nologies for designing or improving the metabolic flux distribution of 
microbes. Some algorithms including flux balance analysis (FBA) 
and minimization of metabolic adjustment (MOMA) predict a flux 
distribution from a stoichiometric matrix in the mutants in which 
some metabolic genes are deleted or non-functional, but there are 
few algorithms that predict how a broad range of genetic modifica-
tions, such as over-expression and under-expression of metabolic 
genes, alters the phenotypes of the mutants at the metabolic flux 
level. 
Results: To overcome such existing limitations, we develop a novel 
algorithm that predicts the flux distribution of the mutants with a 
broad range of genetic modification, based on elementary mode 
analysis. It is denoted as Genetic Modification of Flux (GMF), which 
couples two algorithms that we have developed: Modified Control 
Effective Flux (mCEF) and Enzyme Control Flux (ECF). mCEF is 
proposed based on CEF to estimate the gene expression patterns in 
genetically modified mutants in terms of specific biological functions. 
GMF is demonstrated to predict the flux distribution of not only gene 
deletion mutants but also the mutants with under-expressed and 
over-expressed genes in Escherichia coli and Corynebacterium 
glutamicum. This achieves breakthrough in the a priori flux predic-
tion of a broad range of genetically modified mutants. 
Contact: kurata@bio.kyutech.ac.jp 
Supplementary information: supplementary file and programs are 
available at the journal’s website or http://www.cadlive.jp 
 
 

1 INTRODUCTION  
A cell is a sophisticated factory with lots of the physiological func-
tions including synthesis, transport, storage, and degradation of 
biological molecules. Systems biology aims at rationally designing 
cellular functions at the molecular interaction levels (Joyce and 
Palsson, 2006). Its goals are to understand the mechanism of how 
biochemical networks generate particular cellular functions and to 
rationally design the molecular processes to meet an engineering 
purpose (Nishio et al., 2008). There have been many studies that 
aim at producing useful metabolites using genetically engineered 
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organisms, which often require a mathematical strategy of how the 
molecular processes of complex and robust cells are designed to 
achieve enhanced production. 

Metabolic engineering in microorganisms is among promising 
methodologies for the synthesis of biochemical compounds, such 
as biofuels (Atsumi et al., 2008; Stephanopoulos, 2007) and amino 
acids (Park et al., 2007). Since more than ten genome-scale meta-
bolic networks in microorganisms have been established and the 
flux distributions for hundreds of mutants could be determined in 
large-scale (Fischer and Sauer, 2005), mathematical models are 
required to integrate such biological information and experimental 
data, and contribute to the strain improvements (Lee et al., 2005). 
In silico modeling is a challenge to accurately predict the cellular 
physiological behaviors. 

Constraint-based flux analysis is used for predicting the steady-
state intracellular fluxes from the stoichiometric matrices with 
specific objective functions by optimization algorithms (Kauffman 
et al., 2003). FBA is based on the structural or topological infor-
mation of metabolic networks, while definition of some objective 
functions such as maximum biomass formation or growth rate is 
critical. These days several algorithms, including Linear Program-
ming (LP), Quadratic Programming (QP) (Segrè et al., 2002) and 
Mixed Integer Linear Programming (MILP) (Shlomi et al, 2005), 
have been applied to estimate a change in the flux distribution in 
gene knockout mutants. In regulatory-FBA (rFBA) information of 
gene expression is incorporated by the Boolean logic formalism 
(Akesson et al., 2004; Covert et al., 2004) that uses a binary sys-
tem, where the flux of one reaction is set to be zero if the relative 
gene is not expressed. The flux distribution of such gene knockout 
mutants could be optimized by LP under this additional constraint. 
In Minimization Of Metabolic Adjustment (MOMA), the flux 
distributions of gene knockout mutants can be estimated by the 
QP-based minimization of the Euclidian distance from those of 
wild type to those of a mutant(Segrè et al., 2002). Regulatory 
on/off minimization (ROOM) uses MILP to predict the fluxes of 
gene deletion mutants in which the number of significant flux 
changes is minimized compared with wild type (Shlomi et al, 
2005). 

On the other hand, an alternative way by network-based pathway 
analysis emerges for constructing a mathematical model that ac-
cesses the properties and functions for metabolic networks. It has 
focused on two approaches, elementary modes (EMs) (Schuster et 
al., 1999; Schuster et al, 2000) and extreme pathways (Schilling et 
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al., 2002). Both employ a convex set of vectors used to character-
ize all steady-state flux distributions of a biochemical network. 
Elementary mode or extreme pathway analysis is suggested to 
provide the correlations between metabolic pathways and tran-
scriptional patterns (Çakır et al., 2007; Çakır et al., 2004a; Stelling 
et al., 2002). 

Control Effective Fluxes (CEFs) had been developed based on 
EM analysis to predict the transcriptional regulations, e.g., the 
gene expression patterns of Escherichia coli (Stelling et al., 2002) 
and Saccharomyces cerevisiae (Çakır et al., 2007; Çakır et al., 
2004a) grown on different substrates. The CEF algorithm was 
modified to analyze the erythrocyte enzymopathies of human red 
blood cells (Çakır et al., 2004b), but its application was restricted 
to mutants with partially deficient enzymes, where the available 
range of enzyme activity was from zero for the gene deletion con-
dition to one for a normal state. This algorithm has not been vali-
dated by experimental data yet in a quantitative way. 

Enzyme Control Flux (ECF) (Kurata et al., 2007b; Zhao and 
Kurata, 2009) has been proposed based on EM analysis to predict 
the correlation between the relative enzyme activity profile of a 
mutant to wild type and its associated flux distribution. ECF esti-
mated the flux distributions of a variety of genetically modified 
mutants of E. coli and Bacillus subtilis by using their associated 
enzyme activity profiles. 

Those EM-based methods are critically responsible for linking 
an EM matrix to transcriptional patterns or for connecting an en-
zyme activity profile to its associated flux distribution, but few 
algorithms predict the flux distributions of genetically modified 
mutants by estimating changes in their transcript or enzyme pro-
files.  

The purposes of the genetic modifications for micro-organisms 
are to increase in the yields of bio-compounds or to decrease in the 
productions of by-products. Gene deletion is not the unique meth-
odology for the strain improvement. Over-expression or under- 
expression of genes are very important technologies to increase the 
productivities of target compounds (Becker et al., 2007; Becker et 
al., 2005; Nicolas et al., 2007; Ohnishi et al., 2005). However, the 
existing methods including MOMA and rFBA only predict the flux 
distribution of the mutants that completely lack the genes coding 
metabolic enzymes. They are not applicable to the mutants that 
over-express or partially synthesize specific enzymes. A broad 
range of genetic modification would present a suitable optimiza-
tion strategy for the strain improvements. 

To overcome this limitation, we propose an EM-based algorithm 
that couples our original algorithms: modified CEF (mCEF) and 
ECF, which is denoted as Genetic Modification of Flux (GMF).  
GMF predicts the flux distributions for not only gene knockout 
mutants but also the mutants with over-expressed or under-
expressed genes using the topological structures of metabolic net-
works. The feasibility of GMF is demonstrated by applying it to 
genetic mutants of E. coli, and Corynebacterium glutamicum. 

2 METHODS 

2.1 Control-Effective Flux (CEF) 
The EM  is the minimal set of enzymes that can operate at steady-state with 
all the irreversible reactions operating properly (Schuster et al., 1999). The 

EM matrix ( )ijpP = is determined from the stoichiometric matrix and the 

flux vector 
1 2( , ,..., )t

nv v v=v is represented as: 

= ⋅v P λ ,                              (1) 

where 
1 2( , ,..., )t

mλ λ λ=λ  is the Elementary Mode Coefficient (EMC) 

vector. P  is the n × m matrix in which n is the number of reactions in a 
metabolic network model and m is number of the EMs. Each column of P  
was normalized by the element of substrate uptake in each EM (If the ele-
ment of substrate uptake is zero under sole carbon source conditions, EMs 
form internal loops. It is out of this study.). 

The original algorithm of CEF was developed to estimate the change in 
transcriptional regulations based on the topology of metabolic networks 
with specific biological reactions, when the substrate changes, e.g., from 
glucose to acetate, ethanol or glycerol (Çakır et al., 2007; Çakır et al., 
2004a; Stelling et al., 2002). The efficiency of the j-th EM for each cellular 
objective, ,j CELLOBJε , is defined as the ratio of EM’s output (reaction 

involving the objectives) to the investment required to form each EM (the 
sum of the absolute elements in the EM): 

,
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                                    (2) 

where ,i jp  is the normalized element of the i-th reaction in the j-th EM 

and CELLOBJ is the reaction number for the specific biological function 
(biomass production and ATP generation). CEF for the i-th reaction, which 
is associated to the flux of the i-th reaction, is represented by the weighted 
sum of the i-th elements of all EMs using their associated effi-
ciency

,j CELLOBJε : 

, ,

max
,

( )
1 j CELLOBJ i j

j
i

CELLOBJ CELLOBJ j CELLOBJ
j

p
cef

p

ε

ε

⋅
=

∑
∑ ∑

             (3) 

where max
CELLOBJp  is the maximum element in the row of biological func-

tions. 
The theoretical transcript ratio for the i-th reaction under different sub-

strate conditions, 1s  and 2s , is provided by: 

2
1 2

1

( )( , )
( )

i
i

i

cef ss s
cef s

Θ = .                                (4) 

Details of the CEF algorithm are described elsewhere (Çakır, et al., 2004; 
Stelling, et al., 2002).   

2.2 Modified algorithm of Control-Effective Flux 
(mCEF) 

To apply CEF to a broad range of genetic mutants that over-express, under-
express or lack a metabolic gene, the CEF algorithm is modified. The effi-
ciency of the j-th EM for such a genetic mutant is defined by: 

( )
,

,
,

CELLOBJ j jm
j CELLOBJ

i j i
i

p EA

p
ε

η

⋅
=

⋅∑
,                    (5) 

(if reaction is modified)
1 (if reaction is not modified)

i
i

EAP i
i

η
⎧

= ⎨
⎩

, 

where 
iEAP  is the relative gene expression (enzyme activity) responsible 

for the i-th reaction of a mutant to wild type. 
iEAP  is equivalent to zero if 

the gene of the i-th reaction is deleted. If it is over-expressed or under-
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expressed, 
iEAP  is more than 1 or less than 1, respectively. iη  is the 

correction factor for calculating the investment for genetic mutants. The 
term ( ),i j i

i
p η⋅∑  can be regarded as the EM investment that accounts for 

the cost required for the modified gene of the i-th reaction. When a gene 
belonging to an EM is over-expressed or under-expressed, the investment 

term increases or decreased, respectively. 
j

EA  is the correction factor that 

incorporates the change in the modified reaction into each EM’s output, as 
defined by: 

 
,

1

n

j i j

i

EA ge
=

= ∏ .                                    (6) 

,

(if the -th reaction is involved in the -th EM)
1 (if the -th reaction is not involved in the -th EM)

i
i j

EAP i j
ge

i j
⎧

= ⎨
⎩

  

where ,i jge is the parameter representing the gene expression state for the 

i-th reaction in the j-th EM. When a gene within an EM is over-expressed 
or under-expressed, its output (the numerator of Equation (5)) increases or 
decreases, respectively. This multiplication form (Equation (6)) reflects the 
biological fact that metabolic flux distributions would be determined not by 
a few rate limiting steps than by overall gene expression profiles (Heinrich 
and Rapoport, 1974, Small and Kacser, 1993). This idea is also employed 
by ECF. These factors would be empirically or intuitively derived from 
biological behaviors rather than based on rigorous physical mechanisms. 
 

For 0iEAP = , the EM containing it is neglected (
, 0m

j CELLOBJε = ), which 

is consistent with EM analysis of gene deletion mutants. For 1iEAP = , 

i.e., when gene expressions are not changed at all, Equation (5) is consis-
tent with Equation (2). Equation (5) is an extension of the original effi-
ciency (Equation (2)) to genetic mutants. 
 

The modified CEF (mCEF) for the mutant is defined as: 
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where iη  is used to weight its associated element of each EM. 

 
Since mCEF for wild type corresponds to that of the original CEF: 

, ,

max
,

( )
1( )

j CELLOBJ i j
j

i
CELLOBJ CELLOBJ j CELLOBJ

j

p
mCEF w

p

ε

ε

⋅
=

∑
∑ ∑

,           (8) 

the CEF ratio for a mutant to wild type, the relative change in a gene ex-
pression profile of a mutant to wild type, is provided by: 

( )( , )
( )

i
i

i

mCEF mutw mut
mCEF w

Θ =                             (9) 

Details of the algorithm are illustrated in the supplementary file (Figure S1, 
Table S1-S4). In this method, CELLOBJ is the reaction number for the 
biomass formation and ATP generation. 

2.3 Enzyme-Control Flux (ECF) 
Enzyme-Control Flux (ECF) was developed to estimate the mathematical 
correlation between an enzyme activity profile and its associated flux dis-
tribution, based on the EM matrix P  (Kurata et al., 2007b). The EMCs of  
wild type 1 2( , ,... )w w w w t

mλ λ λ=λ   are calculated by quadratic program-

ming (Schwartz and Kanehisa, 2005; Schwartz and Kanehisa, 2006) from 
the flux distribution of the wild type as follows:  
 

2min ( )w
j

j
λ∑                                               

wsubject to ⋅ =P λ v                             (10) 

0w
jλ ≥                                                   

The EMCs of a mutant are provided by the multiplication form:  

,
1

n
mut w
j j i j

i

aλ γ λ
=

= ⋅ ∏     (11) 

( )
( ),

   if the reaction is involved in the - th EM
  1   if the reaction is not involved in the - th EM

i
i j

a i j
a

i j
⎧ −⎪= ⎨ −⎪⎩

              

where 1 2( , ,... )mut mut mut mut t
mλ λ λ=λ , ,i ja is the relative enzyme activity 

of a mutant to wild type for the i-th reaction in the j-th EM, ia is the en-

zyme activity ratio of the mutant to wild type for the i-th reaction.  mutλ  is 
normalized by a factor ofγ , so that the substrate uptake flux is the same as 
that of wild type. The flux distribution of the mutant is provided by: 

mut mutv P λ= ⋅                        (12) 

Details of the algorithm are described elsewhere (Kurata et al., 2007b).  
 

 

Fig. 1 A schematic diagram for the GMF Algorithm 
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2.4 ECF with mCEF (GMF) 
GMF is presented to predict the flux distributions of the mutants that over-
express the specific genes encoding metabolic enzymes, or partially or fully 
lack them. A schematic diagram of the algorithm is depicted as shown in 
Figure 1. This EM-based algorithm consists of two fundamental algo-
rithms: mCEF and ECF. 

The CEF ratios of a mutant to wild type are calculated from the meta-
bolic network topology by the mCEF algorithm presented in this study. 
Assuming that a gene expression profile is linearly correlated to its associ-
ated enzyme activity profile, the EMCs of a mutant are estimated from the 
flux distribution of wild type by quadratic programming (Equation (10)). In 
some cases, there is a quantitative correlation between mRNA expression 
and protein levels (Ideker et al., 2001; Siddiquee et al., 2004). When the 
enzyme activity ratios can be replaced by the CEF ratios, the EMCs for the 
mutant are provided by Equation (11): 

1

( , )
n

m u t w
j j i

i

w m u tγ
=

= ⋅ Θ∏λ λ               (13) 

Finally, the flux distribution of the mutant is provided by: 

mut mutv P λ= ⋅                                       (14) 

2.5 Test of GMF 
The GMF algorithm is tested by using experimental data. The prediction 
accuracy is evaluated by the prediction error: 

( )2

, ,
1

1 n

i GMF i exp
i

Prediction error v v
n =

= −∑
          (15) 

where, ,i GMFv is the GMF-predicted flux for the i-th reaction and ,expiv is 

the experimental flux for the i-th reaction; n is the number of the fluxes. 

2.6 FBA and MOMA 
FBA typically employs linear programming for the prediction of fluxes 
with the maximum growth rate as the objective function (Kauffman et al., 
2003): 

max growthv                                                   

0subject to ⋅ =S v               (16) 

( ),min ,max 1,...,i i iv v v i n≤ ≤ =                      

where S   represents the stoichiometric matrix and v  is the column vector 
representing the fluxes. In matrix S , there are n reactions. The maximum 
biomass formation is selected as the objective function. 

,miniv and 
,maxiv  

are the lower and higher boundaries for each iv . In the irreversible reac-

tion, 
,miniv is equal to zero. 

 
In MOMA, the flux distribution of mutants could be estimated by the 

minimization of the Euclidian distance from that of wild type (Segrè et al., 
2002).   

2

1
( , ) ( )

N
w m m w

i i
i

D v v
=

= −∑v v
                               (17) 

where w
iv is the flux of the wild type for the i-th reaction and 

m
iv  is the 

calculated flux of the mutants for the i-th reaction. The equation could be 
converted to the standard form for quadratic programming. 
 

( ) ( )min
Tm w m w− −v v v v                                

 0subject to ⋅ =S v                      (18) 

( ),min ,max 1,...,i i iv v v i n≤ ≤ =                          

0dv = (if the d-th reaction is deleted).            

2.7 Implementation 
All the calculations are performed by Matlab (The Mathworks Inc.). The 
EMs are calculated by CellNetAnalyzer (Klamt, et al., 2007). The applica-
tion program of GMF is freely available at the journal’s web site. Generally, 
it is hard to find the global optima in nonlinear systems with a huge space 
of search parameters due to calculation complexity. In this study, quadprog, 
a function in Matlab, is employed to solve quadratic programming. In me-
dium-scale quadprog algorithm, an active set method is adopted.  

2.8 Metabolic network models 
The metabolic networks for E. coli, S. cerevisiae and C. glutaminum were 
reconstructed and analyzed by CADLIVE 2.75 (Kurata et al., 2003; Kurata 
et al., 2007a) and CellNetAnalyzer (Klamt et al., 2007). The reactions and 
metabolites of the metabolic network model for E. coli and C. glutamicum 
were presented in Supplementary file (Figure S2 and S3, Table S5-S8). The 
reactions of biomass formation were cited from references for E. coli (Wi-
back et al., 2004) and C. glutamicum (Gayen et al., 2006). Those of S. 
cerevisiae were from Förster’s paper (Förster et al., 2002). The latest ver-
sion and manual of CADLIVE could be freely downloaded from our web-
page (http://www.cadlive.jp) 

3 RESULTS 

3.1 GMF algorithm 
In GMF, CEF is modified to predict the gene expression patterns 
for a broad range of the mutants with a deleted, under-expressed or 
over-expressed gene. mCEF predicts how a specific metabolic 
gene modification affects the change in the gene expression profile 
of a mutant to that of wild type. ECF estimates how a change in the 
enzyme activity profiles between a mutant and wild type alters the 
flux distribution of wild type. ECF integrates the enzyme activity 
profile into EMCs in a multiplication form, calculating the flux 
distributions (Kurata et al., 2007b). mCEF is directly connected to 
ECF to predict the flux distribution, where ECF uses the ratios of 
gene expressions instead of the associated enzyme activity profile.  

To demonstrate the performance and feasibility of GMF, we 
compare it with other predictive methods such as FBA and 
MOMA, and show the outstanding performance of GMF. 
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3.2 Prediction of gene expression patterns for gene 
deletion and over-expressing mutants by mCEF 

 

Fig. 2  Comparison of the gene expression ratios of a mutant to wild type 
predicted by mCEF with the experimental gene expression ratios. (A) pgi, 
(B) fbp, (C) fba, (D) pykF, (E) gnd and (F) rpe knockout mutants in E. coli. 
The open triangles were omitted from statistical analysis, which corre-
sponds to the reactions with small flux values. Comparison of the simulated 
gene expressions with the experimental enzyme activities in a pyruvate 
decarboxylase (pdc) overproduction mutant in S. cerevisiae (G). The point 
whose relative enzyme activity is more than 10 corresponds to the over-
expressed gene.  

To demonstrate the feasibility of mCEF, the predicted results by 
mCEF were compared with the experimental data (Ishii et al., 
2007), as shown in Figure 2 (A-F).  

To show a correlation between the predicted results and experi-
mental data, we performed a statistical analysis using a linear re-
gression model, while some points with large prediction errors 
were omitted in the same manner as the related studies for CEF 
(Çakır et al., 2007; Çakır et al., 2004a; Stelling et al., 2002). The 
predicted transcript ratios were correlated with the experimental 
ones for pgi, fbp, fba, pykF, gnd and rpe knockout mutants of E. 
coli. The coefficients of determination, R2, are more than 0.6 and 
the slopes are between 0.9253 and 1.0975. These statistical analy-
ses demonstrate that mCEF provides a significant correlation be-
tween the predicted gene expression and experimental data. 

Here, we investigate how the omitted gene expression data affect 
the accuracy of the subsequent prediction of a flux distribution by 
ECF. If a large error occurs at a high flux reaction, the prediction 
error for the flux distribution would increase. However, most of the 

gene expressions with large errors are related to the reactions with 
a small flux (with less than 10), such as ppc and pck in a pgi mu-
tant, edd, rpi, taka, tktb and zwf in a gnd mutant, and ack, eda, edd, 
pps, rpi, tkta and tktb in a rpe mutant. Thus, we would not expect 
that the errors in such gene expressions significantly affect the 
subsequent ECF-based prediction of a flux distribution. 

The enzyme activities ratios in a pyruvate decarboxylase (pdc) 
over-expression mutant of S. cerevisiae to wild type (van Hoek et 
al., 1998) were calculated by mCEF, as shown in Figure 2(G). The 
value of the relative enzyme activity of pdc was approximately 
fourteen. mCEF is effective in predicting gene over-expression 
mutants, although the algorithm proposed by Çakır and co-workers 
is applicable only to the partially or fully deficiency of enzymes in 
metabolic networks (Çakır et al., 2004b). If their algorithm is used 
to calculate the gene expression profile in the pdc overexpression 
mutant of S. cerevisiae, the CEF ratio for the pdc gene is one so 
that the gene expression profile of the mutant is the same as that of 
wild type.  

To investigate how over-expression of a specific gene affects the 
gene expression profile according to mCEF, the profile for the C. 
glutamicum mutant that over-synthesizes G6P dehydrogenase is 
calculated by mCEF, as shown in Figure 3. The relative enzyme 
activity was changed from zero to fifteen. The gene expression 
profile was changed greatly when G6P dehydrogenase was defi-
cient or over-expressed less than the 2-fold compared to those of 
wild type, while more than 2-fold over-expression of the gene did 
not remarkably change the expression profile. It suggests that over-
expressing mutants do not so greatly change the flux distribution as 
the deficient and knockout mutants. 

 

 

Fig. 3 mCEF ratios for each gene expression in a genetically modified 
mutant of C. glutamicum. The relative enzyme activity of G6P dehydro-
genase is changed from 0 to 15. 
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3.3 Prediction of flux distributions of gene deletion 
mutants by GMF 

To demonstrate the feasibility of GMF in comparison with FBA 
and MOMA, GMF is applied to predict the flux distribution of E. 
coli gene deletion mutants of zwf, gnd (Zhao et al., 2004), pykF 
(Siddiquee et al., 2004), ppc (Peng et al., 2004), or pgi (Hua et al., 
2003) under aerobic conditions, as shown in Figure 4 and Table 1. 
In this comparison, FBA employed a typical objective function, 
biomass production, because biomass production is a most suitable 
objective function under these specific conditions (Schuetz et al., 
2007). GMF predicts the intracellular fluxes for these five mutants 
more accurately than FBA and MOMA (Segrè et al., 2002), indi-
cating that GMF takes advantages in estimating the change in gene 
expression pattern for flux predictions. Neither FBA nor MOMA 
explicitly considers any change in gene expression pattern caused 
by genetic modification.  

Since there are generally no unique objective functions common 
to all of the physiological and genetic conditions of micro-
organisms in FBA (Schuetz et al., 2007), different objective func-
tions (ATP yield per flux unit and biomass formation) are used for 
FBA to predict the fluxes of nine gene deletion mutants, as shown 
in Table S9 (Supplementary data). The prediction errors by GMF 
are less than those by FBA with two different objective functions, 
where the prediction accuracy of ATP yield per flux unit shows a 
similar tendency to that of maximum biomass formation. It sup-
ports that GMF can predict the flux distributions for genetic mu-
tants more accurately than FBA.  
 

 

Fig. 4 Comparisons of the predicted and experimental flux distributions in 
E. coli gene deletion mutants. (A) gnd mutant, (B) pgi mutant, (C) ppc 
mutant, (D) pykF mutant, (E)  zwf  mutant. Cultivation is carried out under 
aerobic conditions. The prediction is carried out by FBA (×), MOMA (+) 
and GMF (O). 

Table 1 Prediction errors for five mutants of E. coli by FBA, MOMA and 
GMF 

Method zwf gnd pgi ppc pyk 

FBA 18.38 14.76 23.68 29.92 21.10 
MOMA 18.06 14.27 29.38 19.79 25.83 
GMF 6.43 9.21 18.47 18.95 20.46 

3.4 Applicability to over-expression and under-
expression mutants 

To show another advantage of GMF, GMF is applied to prediction 
of the flux distribution of gene over-expression (Becker et al., 
2007; Becker et al., 2005; Nicolas et al., 2007) and under expres-
sion mutants (Ohnishi et al., 2005), as shown in Figure 5, while 
existing algorithms including MOMA and rFBA are not applicable 
to them. GMF accurately predicts the flux distributions of these 
four mutants, indicating that GMF is feasible for a broad range of 
genetic modification.  

To confirm the validity for GMF to over- or under-expression 
mutants, we compared the prediction errors by GMF with those by 
a control (mock) method where all the expression ratios are set to 
one. The prediction errors by GMF are 1.18, 9.37 and 10.00 for a 
zwf over-expressing mutant of E. coli, zwf and fbp over-expressing 
mutants of C. glutamicum, respectively. Those by the control 
method are 2.62, 9.64, and 10.40. This shows that accounting for a 
change in gene expression takes an advantage for enhanced predic-
tion accuracy. 

 

Fig. 5 GMF-predicted flux distribution for gene over-expression or under-
expression mutants. (A) zwf mutant of E. coli (enzyme activity parameter, 
EAP: 15.11; Nicolas et al., 2007), (B) zwf mutant of C. glutamicum (EAP: 
3.6; Becker et al., 2007),(C) FBP mutant of C. glutamicum (EAP: 9.3; 
Becker et al., 2005) ,(D) gnd mutants of C. glutamicum (EAP: 0.43; Ohni-
shi et al., 2005) 

On the other hand, for a gnd under-expressing mutant of C. glu-
tamicum (Figure 5D) the prediction error is 15.26 by GMF while it 
is 2.08 by the control method. In this mutant, the enzyme activity 
of 6-phosphogluconate dehydrogenase (gnd) decreased to about 
43% of wild type, but the flux responsible for the gnd gene in-
creased from 38.1 (wild type) to 41.4 (mutant). It seems some con-
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fliction with the predicted result by GMF. Since no Enter-
Doudoroff pathway is seen in the metabolic reaction of C. glu-
tamicum in KEGG (http://www.genome.jp/kegg/) and a genome-
scale network model (Kjeldsen and Nielsen, 2009), the flux for gnd 
should be less than that of wild type. This inconsistency between 
the predicted and experimental data may need further studies. 

As shown in Figure 6, GMF simulates the flux of the zwf-
catalyzed reaction (G6P dehydrogenase reaction) in a C. glu-
tamicum mutant (Nicolas et al., 2007), where the relative enzyme 
activity of zwf changes from zero to fifteen. The predicted fluxes 
are consistent with the experimental ones. The flux rapidly in-
creases at a low value (1-5) of the relative enzyme activity and 
then saturated. Over-expression of a specific gene does not always 
lead to a linear increase in the flux, because the in vivo flux is con-
strained by the supply of substrates. 

 

 

Fig. 6. The flux of the G6P dehydrogenase reaction with respect to the 
relative enzyme activity in a zwf mutant of C. glutamicum. The relative 
enzyme activity of G6P dehydrogenase is changed from zero to fifteen. 
Predicted flux (O) and experimental flux (×). 

4 DISCUSSION 
A breakthrough in GMF is that the mCEF algorithm enables the 
prediction for the gene expression patterns of genetically modified 
mutants that are required by ECF. The prediction by mCEF is per-
formed based on the metabolic pathway architecture in terms of the 
ATP generation and biomass production. This reflects that a 
change in the gene expression pattern in metabolic networks is 
closely related to such specific biological functions. 

ECF uses the gene expression profile estimated by mCEF to 
predict the flux distributions. In ECF, an enzyme activity profile is 
readily incorporated into the EMCs in the multiplication form, 
based on the fact that the flux distribution would be determined by 
many enzyme activities rather than a few rate limiting enzymes 
(Heinrich and Rapoport, 1974, Small and Kacser, 1993).  

GMF shows a higher prediction accuracy of the flux distribution 
of a broad range of genetic mutants. To demonstrate the feasibility 
of GMF, it is important to compare it with typical algorithms of 
MOMA and FBA. The requirements of GMF are the same as 
MOMA: a metabolic network and a flux distribution of wild type, 
to predict the flux distribution of genetic mutants. Thus, we can 
directly compare their performance in terms of prediction accuracy 
and its applicability. On the other hand, FBA does not require the 
flux distribution of wild type but biological objective functions. 
The prediction accuracy of FBA generally depends on selection of 
objective functions (Schuster et al., 2008). Thus, different types of 
them are used to compare FBA with GMF (Table S9). Conse-

quently, it is possible to say that GMF provides a high accuracy for 
prediction. Another advantage of GMF over these existing algo-
rithms is that it is applicable to not only gene deletion mutants but 
also gene over-expression or under-expression mutants. This con-
tributes to advances in design of biosynthesis by genetically engi-
neered strains, because overexpression or under-expression of 
target genes is a promising strategy for enhanced production. 

As mentioned above, GMF shows high predictive capability and 
applicability to a broad range of genetic mutants, while GMF is 
limited to small- or moderate-scale metabolic networks because it 
is based on EMs. To apply GMF to genome-scale networks it is 
necessary to develop new algorithms to avoid combinatorial explo-
sion in the number of EMs.  
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