

KIT, Kurata Laboratory

1

Technical Description of CADLIVE SIMULATOR

A. PARSEDAE... 6
1 Abstract ... 6

1.1 Input data.. 6
1.2 Mathematical formulas... 7

2 Input data... 7
2.1 Structure of input data .. 7
2.2 Species naming rules.. 9
2.3 Complex ... 9
2.4 Species Attribute .. 10
2.5 Definition of regulator-reaction equations ... 10

3 Conversion to mathematical models ... 13
3.1 TT (ordinary Transcription and Translation) .. 13

3.1.1 Transcription without regulators (gene0) .. 14
3.1.2 Transcription with regulators (gene1) ... 14
3.1.3 Translation... 14

3.2 CMA (Conventional Mass Action)... 14
3.2.1 Binding reactions... 14
3.2.2 Conversion reaction... 15
3.2.3 General enzyme reaction ... 15
3.2.4 Transport ... 16
3.2.5 Spontaneous decomposition .. 16

3.3 GMA (General Mass Action) ... 17
3.4 MM (simplified Michaelis-Menten equations) .. 18
3.5 DAEs .. 18

3.5.1 Steady-state approximation I... 18
3.5.2 Steady-state approximation II.. 19
3.5.3 Rapid equilibrium approximation ... 19
3.5.4 Complexes in TPP... 20

3.6 S-system ... 20
3.7 Connection between layers... 21

4. Selection of conversion methods.. 22
4.1 Gene-protein layer.. 22
4.2 Metabolic layer... 22
4.3 Connection between the layers... 22

B. CHECKDAE ... 23

KIT, Kurata Laboratory

2

1 Objectives.. 23
2. Function.. 23

2.1 Grammar check for mathematical models.. 23
2.2 Expansion to mathematical equation trees ... 24
2.3 Function for checking parameters and variables .. 24
2.4 Function for expanding temporary expressions ... 24
2.5 Function for indexing variables and parameters .. 24
2.6 Function for replacing the indexes ... 24
2.7 Symbolic partial differentiation.. 24
2.8 Function for S-system conversion.. 24
2.9 Parameter survey .. 24

3 Specification of input and output .. 24
3.1 Specification of input ... 24
3.2 Specification of output ... 24

3.2.1 User function file... 24
3.2.2 Parameter file .. 25
3.2.3 Temporary mathematical expression file... 27
3.2.4 S-system coefficient file .. 27

4 Data structure .. 28
4.1 Main structures... 28
4.2 Node_T structure.. 29

5 Procedure... 30
5.1 Input procedure (Read_data) .. 33

5.1.1 Reading checkdae files: data split and data number acquisition (split_dae_file) 33
5.1.2 Index check and memory allocation (allocate_area). .. 33
5.1.3 Reading parameter labels (read_param_base)... 33
5.1.4 Reading parameters (read_param)... 33
5.1.5 Reading variables (read_var)... 33
5.1.6 Reading temporary mathematical expressions (read_mid) ... 33
5.1.7 Reading differential equations and algebraic equations (read_equation) .. 33

5.2 Expansion of mathematical equations in a tree structure (set_expression、Make_node) 34
5.2.1 Reading mathematical expression (get_token).. 34
5.2.2 Checking mathematical expression (check_token) ... 34
5.2.3 Adding a blank child node (add_emptyChild)... 34
5.2.4 Inserting a child node (insert_childNode) ... 34
5.2.5 Inserting a parent node (insert_parentNode) ... 34
5.2.6 Deleting nodes (del_node)... 34
5.2.7 Searching equivalent or less prior nodes (seek_same) .. 35

KIT, Kurata Laboratory

3

5.2.8 Reconstructing mathematical expressions (Set_expr) ... 35
5.3 Checking variables (check_node、check_detail) .. 35
5.4 Expanding temporary mathematical expressions (expand_mid).. 35
5.5 Assigning an index to a variable (set_variable_index)... 35
5.6 Converting variables (set_numerical_index, check_node, replace_variable) .. 35
5.7 Symbolic partial differentiation (Make_diff) ... 35
5.8 Output process.. 36

5.8.1 Output of user functions for simulators (Write_userfunc)... 36
5.8.2 Output of parameter files (Write_paramFile) .. 36
5.8.3 Output of temporary mathematical expression obtaining file (Write_flux) 36

5.9 S-system conversion（Set_Ssystem） .. 36
3.2.5 S-system user function file .. 37

C. SOLVER.. 39
1. Introduction .. 39
2. Analysis types... 39
3. Input for control data.. 39

D. MERGEPARAM ... 41
1. Objectives... 41
2. Function.. 41
3. Input/output specification... 41

3.1 Y_START... 41
3.2 PARAM.. 41

4. Command ... 42
5. Error message... 42

E. SENSITIVITY AND STABILITY ANALYSIS BY S-SYSTEM.. 43
1. Objectives... 43
2. Introduction of S-system .. 43

2.1 S-system conversion... 43
2.2 Sensitivity analysis... 44

2.2.1. Logarithmic gain of a metabolite ... 44
2.2.2. Logarithmic gain of a flux.. 45
2.2.3. Sensitivity with respect to a rate constant .. 45
2.2.4. Sensitivity of dependent variables with respect to a kinetic order ... 45
2.2.5. Sensitivity of a flux to a rate constant .. 46
2.2.6. Sensitivity of a flux with respect to a kinetic order .. 46

2.3 Stability analysis .. 46
3 Process flow .. 47
4 Function... 49

KIT, Kurata Laboratory

4

4.1 Creation of S-system parameter file ... 49
4.2 Sensitivity analysis... 49
4.3 Stability analysis .. 49

5 Input/Output Specification .. 49
5.1 Input specification .. 49
5.2 Output specification ... 50

F. OPTIMIZER (GA) ... 52
1. Introduction .. 52
2. Function specification and application problems ... 52

2.1 Function Specification.. 52
2.2 Application problem... 53

3. Execution of programs ... 53
4. Input/output specification... 54

4.1 Parameter-range setting file.. 54
4.2 GA-parameter setting file... 55

4.2.1 GA-parameter setting file.. 55
4.2.2 Examples for GA parameter setting file .. 57
4.2.3 GA-population setting file... 58
4.2.4 Examples for GA-population setting file .. 58

4.3 Standard output .. 59
4.4 Output file... 61

5. Detailed specification of functions... 61
5.1 Encode method... 61

5.1.1 Bit-string GA... 61
5.1.2 Real GA... 62

5.2 GA type .. 62
5.2.1 Distributed GA .. 62
5.2.2 Distributed and integrated GA (DIGA) ... 62

5.3 Generation alternation .. 62
5.3.1 Ordinary generation alternation method.. 63
5.3.2 Minimal Generation Gap (MGG).. 63

5.4 Crossover method... 63
5.4.1 BLX-α [RGA] ... 63
5.4.2 UNDX / UNDX-m [RGA] .. 64
5.4.3 SPX [RGA] ... 65
5.4.4 N point crossover [BGA] .. 66

5.5 Mutation method .. 66
5.5.1 Uniform mutation within the region [RGA].. 66

KIT, Kurata Laboratory

5

5.5.2 Uniform mutation with fixed width [RGA]... 66
5.5.3 Normal mutation with fixed width [RGA] .. 66
5.5.4 Uniform mutation with variable width [RGA] .. 67
5.5.5 Normal mutation with variable width [RGA] ... 67
5.5.6 Bit reverse mutation [BGA] .. 67

6. Flow chart... 67
6.1 Single without MPI... 67
6.2 MPI... 68

6.2.1 Master-slave model ... 68
6.2.2 A flow char in MPI .. 69

G. CLIENT-SERVER MODEL .. 72

KIT, Kurata Laboratory

6

A. PARSEDAE
1 Abstract
In order to convert the regulator-reaction equations into mathematical models, CADLIVE classifies biochemical

ractions into three layers: gene, protein, and metabolic layers, and divides the conversion process into two stages,

the first conversion (ordinary transcription and translation equations = TT, conventional mass action = CMA,

general mass action = GMA, simplified Michaelis-Menten equations = MM), and the second conversion

(differential and algebraic equations = DAEs, S-system). From the standpoint of mathematical conversions, the

applied mathematical conversion strongly depends on the layer that the regulator-reaction equations belong to. At

the first stage, both gene and protein networks employ TT and CMA, whereas the metabolic network uses GMA or

MM. In the gene layer, since various molecules such as proteins, amino acids, nucleic acids, and RNAs act in

concert for transcription and translation, it is difficult to mathematically describe such reactions based on their

concrete molecular mechanism. The use of TT is a rational choice for taking in gene regulations within a cell. In the

conversion of metabolic networks into GMA or MM, the concentrations of enzyme-metabolite complexes are

cancelled compared with those of metabolites, because the former are far less than the latter. By contrast, in the

protein layer, many proteins function in a complex or modified form, thus it is not practical to cancel the

concentrations of the active complexes or modified ones. Thus, the use of CMA and TT describes the protein signal

transduction pathways. Problems for CMA are that its differential equations are stiff due to the huge differences in

values of kinetic parameters and molecular concentrations, and that many kinetic parameters are required.

At the second stage, in order to overcome such problems, we applied the Two-Phase Partition (TPP) method to

the conversion of CMA with TT to differential and algebraic equations (DAEs), thereby reducing not only the

stiffness, but also decreasing the number of kinetic parameters. The TPP method divides the kinetics of molecular

interactions into two phases, the molecular binding phase and the reaction phase, assuming that

association/dissociation rates between proteins to be quite fast compared with the rates of synthesis/degradation of

mRNAs or proteins. This is a commonly used assumption in biological systems. Consequently, TPP substitutes

algebraic equations for stiff differential equations. In addition to DAEs, CADLIVE is able to convert the ordinary

differential equations of TT, CMA, GMA, and MM into S-system at the steady state, which is useful for analyzing

the sensitivity and stability in symbolic form.

The parsedae module converts the regulator-reaction equations (sanac file Fig. A1), which are constructed by the

CADLIVE editors, into the mathematical equations (checkdae file) including TT, CMA, GMA, MM, DAEs, and

S-system. The checkdae file employs the indexes of species' names so that one can understand the model or edit it

manually. One is allowed to edit the checkdae file directly according to the instruction. The checkdae file is written

in the text format.

1.1 Input data
The parsedae module inputs the "sanac" file (Fig. A1) that mainly consists of two kinds of data. One is the species

(molecules) with their associated attributes. The other is the regulator-reaction equation that determines the

interaction among species.

KIT, Kurata Laboratory

7

1.2 Mathematical formulas
The following mathematical formulas have been employed.

Protein layer

CMA (Conventional Mass Action) is applied to the protein layer, focusing on the formation of complexes and

modified proteins.

Gene layer

TT (ordinary transcription-translation equations) is applied to the gene layer.

Metabolic layer

GMA (General Mass Action) is applied to the metabolic layer, neglecting detailed mechanisms including the

formation of enzyme-metabolite complexes.

MM (simplified Michaelis-Menten equations) is applied to the metabolic layer, canceling the concentrations of

enzyme-metabolite complexes. MM is obtained by simplifying ordinary Michaelis-Menten equations.

All the layers

DAEs (differential and algebraic equations) are applied to the gene-protein layer using the two-phase partition

(TPP) method.

S-system can be applied to all the layers.

2 Input data
2.1 Structure of input data
Systems Biology Markup Language (SBML) is one of the most advanced markup language that describes

biochemical networks at a concrete molecular interaction level. We extend SBML level 2 to establish the sanac

format that includes all the information necessary for mathematical conversion and dynamic simulation. The

original sanac file (Fig. 1A) contains various data including the coordinates of the species, which are used for

drawing a biochemical network map by the CADLIVE GUI editors. Here we omit the data that are not necessary

for mathematical conversion and dynamic simulation.

KIT, Kurata Laboratory

8

sanac
1 model (name, modelInfo)

1 listOfCompartments (numberOfCompartments)

+ compartment (name, volume)

1 listOfSpecies (numberOfSpecies)

+ Specie (specieID, name, compartment)

1 specieAttribute (specieClass, massBalance, totalAmount,

decomposition, initialAmount)

? listOfElements (numberOfElements) :for a complex

+ specieReference (specieID, name, compartment, stoichiometry)

+ listOfReactions(layer, numberOfReactions)

+ Reaction (reactionID, groupID, reactionType, isConvertible,

modifierReactionEquation)

1 listOfReactants (numberOfReactants)

* specieReference (specieID, name, compartment, stoichiometry)

? listOfProducts (numberOfProducts) :for degradation, an empty is possible.

+ specieReference (specieID, name, compartment, stoichiometry)

? listOfModifiers (numberOfModifiers)

1 modifieSpecieReference (specieID, name, compartment, stoichiometry,

modifierType, isTotal)

? modifierComplex

1 specieReference (specieID, name, compartment, stoichiometry)

Fig. A1 Conversion rules implemented in the "sanac" representation. They are necessary and sufficient for

computationally converting biochemical networks into mathematical models. The regulator is exactly the same

as the SBML-defined modifier. The net regions are the extension from SBML level 2. Legend: 1: an element

that appears once. *: an element that repeats more than zero. +: an element that repeats more than one. ?: an

element that appears once or zero. t: an element that has text in content. (): provided as attributes. The net

regions are the extension from SBML level 2.

The major extensions are as follows:

z The attribute of "specieID" refers from the lists of reaction equations or species.

z The element of <listOfElements> shows the components of the complexes, which are defined as

"specieReference".

z The attribute of "layer" is added to the element of <listOfReactions>, whereby a biochemical network can

be divided into three layers, metabolic (metabolic), protein signal transduction (protein), and gene

regulatory networks (gene).

z The attribute of "modifierReactionEquation" is added to the element of <reaction>.

KIT, Kurata Laboratory

9

z The elements of <listOfModifiers> and <modifierComplex> are added to the element of <Reaction>, which

are necessary for mathematical conversion. The modifierComplex corresponds to substrate-enzyme complex

in ordinary enzyme reactions.

z The attribute of "reactionType" is added to distinguish regulator-reaction equations, which are indispensable

for mathematical conversion.

z The attribute of "modelInfo" is added to comment the model.

2.2 Species naming rules
 The following characters are allowed to name species

Initial character

- upper and lower alphabets [a-z] | [A-Z]

- number [0-9]

- left parentheses (

Second characters

- upper and lower alphabets [a-z] | [A-Z]

- underbar _

- number [0-9]

- left and right parentheses ()

- colon :

- hyphen _

- period .

The period may be used for indicating a decimal point.

2.3 Complex
A complex is defined by listing its components as specieReference in <listOfElements>. The use of "stoichiometry"

of "specieReference" is able to determine the ratio of components. Not only a monomer/modified but also a

complex is allowed to list as the components of the complex, thus users are able to define a higher complex by

using complex, modified, or monomer. It is required to keep the naming rules. The employed species are required

not to show reference circulation and to be defined in the model.

The element of <listOfElements> is used:

1: to assign the species decomposition to the respective differential equations,

2: to generate the mass balance equations and the differential equations for the total amounts of the species whose

class is protein or modified in the TPP conversion,

3: to calculate the total concentrations of promoters and enhancers in the "gene1" reaction.

KIT, Kurata Laboratory

10

2.4 Species Attribute
The species is defined by three indispensable attributes:

z specieID :The integer unique to the combination of species' name with its compartment

z name :Users can name the species arbitrarily.

z compartment :Location of the species
The other attributes are provided as shown in Table A2.

Table A2 Attributes of species (molecules)

Attribute Content Value
specieID the integer unique to the combination

of species' name with its
compartment

Name name of species named by user
Compartment location of species see text

DNA_gene
DNA_promoter
DNA_enhancer
DNA_others
RNA
protein
metabolite
environmental_factor
ion_signal
complex
modifier_complex
modified
small_molecule
text_option

SpecieClass kinds of species

others
on massBalance total mass balance equation

is required. off
constant totalAmount total concentration
variable
on decomposition spontaneous degradation in vivo
off

initialAmount initial concentration of species real value

2.5 Definition of regulator-reaction equations
A model has multiple elements of <listOfReactions>, which has two indispensable attributes of "layer". The

attribute of "layer" has three values, "metabolic", "protein", and "gene", which indicate where reactions occur. The

metabolic layer indicates metabolic networks, the protein layer signal transduction pathways, and the gene layer

transcription and translation. The mathematical formulas are determined by the layer that reaction belongs to.

KIT, Kurata Laboratory

11

z layer :determining the layer that reactions occur, which consists of "metabolic", "protein",

and "gene".

z numberOfReactions :the number of reactions.

The element of <reaction> consists of the elements of <listOfReactants>, <listOfProducts>, <listOfModifiers>,

and <modifierComplex>

z listOfReactants :defines reactant(s)

z listOfProducts :defines product(s), For "reactionType = degradation", an empty is possible.

z listOfModifiers :define modifier.

z modifierComplex :define the complex containing a modifier.

The " reactionType" attribute of <reaction> is shown in Table A3.

Table A3 Values of the attribute of reactionType

Value
binding
binding_with_stoichiometric_changes
homo_association_or_modification
homo_association_or_modification_with_stoichiometric_changes
elimination
elimination_with_stoichiometric_changes
reversible_conversion
irreversible_conversion
reversible_conversion_regarding_multicomponent
irreversible_conversion_regarding_multicomponent
transport
option_transport
transcription
translation
degradation

The elements of <listOfReactants>, <listOfProducts>, <modifierComplex>, and <listOfElements> have to be

referred from <specieReferences>, which consists of four attributes, "specieID", "name", "compartment", and

"stoichiometry".

z specieID :

z name :

z compartment :cytoplasm, nucleoplasm, membrane, environment, …..

z stoichiometry :defined by real values. The default value is one.

KIT, Kurata Laboratory

12

The element of <listOfModifiers> must be referred from <modifierSpecieReference>, which is the element of

<specieReference> with the attributes of "modifierType" and "isTotal".

z modifierType :enzyme, activator, inhibitor

z isTotal :false, true

Here we explain the detailed rules by using the nitrogen assimilation system. The attribute of "isConvertible" in

the element of <reaction> determines if the regulator-reaction equations can be converted into mathematical

equations. The parsedae module of CADLIVE converts all the reactions with "isConvertible = on", whereas the

reactions with "isConvertible = off" are excluded from the mathematical model.

The parsedae module recognizes the variables prior to conversion of the reactions with "isConvertible = on". The

attribute of "totalAmount" of the element <specieAttribute> is introduced to determine whether the total

concentration for the species is constant (independent variable) or variable (time-dependent variable). When

"totalAmount" of protein is "variable", the protein is synthesized and decomposed according to TT, i.e., the total

concentration varies with time. When the total concentration of the protein with "totalAmount = constant" is

independent of time, protein synthesis and degradation are assumed not to occur. In addition, the parsedae module

distinguishes the species by the attribute "compartment" in the element of <specieAttribute> that indicates
which compartment the species is located.

At the first stage that generates ordinary differential equations, such as TT, CMA, GMA, and MM, the combined
attributes of "layer" in the elements of <listOfReactions>, "reactionType" and "groupID" of the elements of

<Reactions>, and "modifierType" in the element of <listOfModifier> produce the appropriate differential

equations. The attribute of "layer", which has three values, "metabolic", "protein", and "gene", determines the
basic mathematical formula. The metabolic layer employs GMA or MM, the protein layer, which indicates
signal transduction pathways through protein interactions, uses CMA, and the gene layer uses TT. The
attribute of "reactionType", which consists of the various kinds of regulator-reaction equations, determines
which type of differential equations is employed in each type of reaction. The element of <listOfModifier>
presents concrete regulator information, where the attribute of "modifierType" indicates the type of modifiers,

"enzyme", "activator", or "inhibitor". The value of "enzyme" indicates general enzyme reactions, whereas

"activator" or "inhibitor" is used for "reactionType = transcription". In transcription, an activator binds to an

enhancer to enhance the transcription of a gene, while an inhibitor binds to a promoter to repress the transcription of

a gene. The attribute of "groupID" is required to group a series of reactions, where the multiple regulators with the

same "groupID" act on the identical reaction. They are usually used for the "gene1" transcription. For example,
when multiple transcription regulation factors (TRFs) act on the transcription of a gene, these
regulator-reaction equations with the same "groupID" generate one transcription regulation equation with
multiple TRFs.

In order to express the spontaneous degradation of proteins and mRNAs in vivo, the attribute of
"decomposition" is employed in the element of <specieAttribute>. Generally, proteins and RNAs
constitutively degrade in vivo due to factors including proteases ("decomposition =on "), whereas DNAs do
not degrade ("decomposition =off "). When the species consists of multiple components, the attribute of

KIT, Kurata Laboratory

13

"decomposition" has to be searched recursively, while checking whether "decomposition" of each component is on

or off.

In the second process, the attributes of "specieClass" "massBalance", and "totalAmount" in the element of
<specieAttribute> play intrinsic roles in converting the ordinary differential equations into DAEs. The attribute
of "specieClass" indicates the kinds of species, such as DNAs, RNAs, proteins, complexes, and metabolites.
This attribute of "specieClass" determines which components are needed to make the mass balance equations
for each species, e.g., "monomer", "modified", "enhancer", or "promoter". Binding multiple molecules without
any stoichiometric change generates "complex", whose components are listed in <listOfElements>. The

parsedae module automatically names the complex by joining its associated elements with a colon (:), e.g., PI:PII.

The value of "modified" indicates the molecules that are chemically modified through modification processes such

as phosphorylation and acetylation, which are accompanied with stoichiometric changes. The value of "modified" is

automatically named by joining the modifying molecule to the modified one using a hyphen (-), e.g.,

phosphorylated NRI is expressed as NRI-P. For example, the molecules of PI:PII, NRI-P:Enhancer, and

NRI-P:NRII are "complex", whereas NRI-P and NRII-P are "modified". The element of "modifierComplex" means

an active complex consisting of an enzyme and substrates, which is automatically generated when an enzyme

reaction is defined. The attribute of "massBalance" determines whether total mass balance equations are made
for the species with "massBalance = on", e.g., monomer, modified, enhancer, or promoter. TPP applies the
quasi-steady state or rapid equilibrium approximation to the differential equations for the species with
"specieClass = complex". For the species with "massBalance = on", the mass balance equations are generated
that sums all the complexes containing the species as components. The total concentration of the species is

named by adding "T" to the head of species' name, whereas species' name without "T" indicates a free molecule.
In order to combine the gene and protein layers with the metabolic layer, the attribute of "isTotal" is presented to

determine if a modifier acts as a free species or as the total amount of the species. It is a critical attribute when the

concentration of the enzyme is defined as a time-dependent variable in the metabolic layer. With "isTotal = true" for

an enzyme, the total concentration of the enzyme is employed for GMA or MM type. Conversely, with "isTotal =

false" for an enzyme, the free concentration of the enzyme is used for the metabolic layers. This rule enables one to

combine the three layers, i.e., metabolic and gene regulatory networks.

3 Conversion to mathematical models
3.1 TT (ordinary Transcription and Translation)
In the gene layer, transcription and translation occur in complicated manners, which involve a large number of

nucleic acids, amino acids, RNAs and proteins. It is not practical to describe all possible reactions, and it is difficult

to convert the transcription or translation (gene layer) into CMA based on their detailed molecular mechanism.

Thus, we apply a general type of differential equations suitable for transcription and translation equations. For

transcription, we conveniently divide two types: gene0 and gene1. For gene0, no transcription regulation factor

involves transcription; for gene1, activators or inhibitors regulate the transcription.

KIT, Kurata Laboratory

14

3.1.1 Transcription without regulators (gene0)

Assuming that no gene regulation involves transcription, the transcription occurs at a constant rate, which is

provided by:

Regulator-reaction equations: () ()gene A mRNA A→ (A1)

Differential equations:
[()] [()]m

d mRNA A k gene A
dt

= (A2)

where km is the transcription rate constant.

3.1.2 Transcription with regulators (gene1)

For gene1, since activators or inhibitors regulate the transcription, regulator-reaction equations are provided by:

:i iActivator Enhancer Gene mRNA− >> → . (A3)

:i iSuppresor Promoter Gene mRNA− → (A4)

The synthesis rates are converted into:

1 11 1

[:][:][] { () (1)} []
[] []

n mn m
j ji i

m
i ji ji j

Suppressor PromoterActivator Enhancerd mRNA k or or or Gene
dt TEnhancer TPromoter= == =

= ⋅ + × − ⋅∑ ∑∏ ∏

 (A5)

[] []p
d Protein k mRNA

dt
= ⋅ (A6)

where mk is the transcription rate constant, and pk is the translation rate constant. Complicated transcriptions

can be described by using the GUI editors.

3.1.3 Translation

For example, the protein A is synthesized from mRNA(A), which is given by:

[] [()]p
d A k mRNA A

dt
= , (A7)

where pk is the translation rate constant.

3.2 CMA (Conventional Mass Action)
Regulator-reaction equations can be divided into binding reactions and conversion reactions.

3.2.1 Binding reactions

For example, a binding reaction is provided by:

KIT, Kurata Laboratory

15

nnnn AAAAAA ka

ks
αααααα ::: 22112211 KK →

←+++ , (A8)

where iα is the stoichiometry.

+−= ∏
=

]:::[][
][

2211
1

nn

n

j
ji

i AAAkdAka
dt
Ad j ααα K

αα (i = 1～n) (A9)

]:::[][
]:::[

2211
1

2211
nn

n

j
j

nn AAAkdAka
dt

AAAd j ααα
ααα

K
K

−= ∏
=

α , (A10)

where ka is the binding association rate constant, and kd is the dissociation rate constant. The amount of the

corresponding species on the left and right sides has to be the same. The parsedae checks the stoichiometry of

reactions. In addition, the parsedae module checks the components of the complex. For the binding reaction

equations:

):(:):(321321 AAAAAA ka

ks

→
←+ and 321321 ::):(AAAAAA ka

ks

→
←+ (A11)

are allowed, but the equation:

):(: 321321 AAAAAA ka

ks

→
←++ (A12)

is not allowed, when the parsedae outputs the error.

3.2.2 Conversion reaction

The reaction:

mm
kx

nn BBBAAA βββααα +++→ KK 2212211 ::: １ (A13)

is converted into CMA:

]:::[
][

2211 nni
i AAAkx

dt
Bd

ααα Kβ= (i = 1～n) (A14)

]:::[
]:::[

2211
2211

nn
nn AAAkx

dt
AAAd

ααα
ααα

K
K

−= , (A15)

where kx is the conversion rate constant.

3.2.3 General enzyme reaction

General enzyme reactions except for transcription and translation can be provided by:

1 1 2 2 1 1 2 2 1 2 2: : :ka

kdn n n m mkxA A A A A B B Bβ β β→←+ + + → + + +… … …１α α α α α α , (A16)

KIT, Kurata Laboratory

16

where iA is the substrates, iB the products, iα and iβ are the stoichiometric coefficients, ak is the

association rate constant and dk is the dissociation rate constant, and xk is the conversion rate constant. This

reaction is converted into CMA as follows:

1 1 2 2
1

[] [] [: : :] (1,...,)j
n

i
i j n n

j

d A ka A kd A A A i n
dt

αα
=

= − ⋅ + =

∏ α α α… . (A17)

1 1 2 2
1 1 2 2 1 1 2 2

1

[: : :] [] [: : :] [: : :]j

i

n
n n

j n i n n
j

d A A A ka A kd A A A kx A A A
dt

α
β β

=

= − −∏α α α
α α α α α α

… … …

(A18)

1 1 2 2
[] [: : :] (1,...,)i

i n n
d B kx A A A i m

dt
β= ⋅ =α α α… (A19)

3.2.4 Transport

The species A is transported from one compartment to another compartment (A’)

][][Aktr
dt
Ad

−= , (A20)

][]'[Aktr
dt
Ad

+= (A21)

where ktr is the transport rate constant. Active transport with an enzyme is processed in the same manner as a

conversion with an enzyme.

3.2.5 Spontaneous decomposition

Proteins and RNAs are generally degraded in vivo. Thus, we omit the regulator-reaction equations for spontaneous

decomposition. Instead, we prepare the attribute of decomposition for species. With "decomposition = on" for a

species, the parsedae module adds the spontaneous degradation term to the differential equation for the species, as

follows:

][][Akpd
dt
Ad

−= , (A22)

where kpd is the degradation rate constant. For mRNA, kmd is defined as the degradation rate constant for mRNAs.

Notice that the reaction type of "degradation" is different from the spontaneous decomposition.

When the components have complexes, the parsedae checks the attributes of decomposition recursively, while

checking whether "decomposition" is "on" or "off". For example, when the decomposition of A, B, C, A:B, B:2D,

(A:B):(2(B:2D)):(3(C:D)) is on, that of D, C:D is off, the differential equations for the respective components

include the following terms :

i) d[A]/dt = - kpd[1] * [A]

ii) d[B]/dt = - kpd[2] * [B]

KIT, Kurata Laboratory

17

iii) d[C]/dt = - kpd[3] * [C]

iv) d[D]/dt = + 2*kpd[5] * [B:2D] + 4*kpd[6] * [(A:B):(2(B:2D)):(3(C:D))]

v) d[A:B]/dt = - kpd[4] * [A:B]

vi) d[B:2D]/dt = - kpd[5] * [B:2D]

vii) d[C:D]/dt = + 3 * kpd[6] * [(A:B):(2(B:2D)):(3(C:D))]

viii) d[(A:B):(2(B:2D)):(3C:D)]/dt = - kpd[6] * [(A:B):(2(B:2D)):(3(C:D))]

Since the decomposition for the species of (A:B):(2(B:2D)):(3(C:D)) is on, the decomposition terms are added to

the respective differential equation (vii). Next, the decomposition of its components of A:B, B:2D, and C:D is

checked. Since the decomposition of A:B, A, and B is on, no source term is added to the equations (i,ii,v). The

decomposition of B:2D is on, the decomposition term is not added to the respective differential equation (iv).

However, since the decomposition of D is off, and the decomposition of B:2D releases 2*D, the source term for D

is added to the equation (iv). Since C:D is not decomposed despite the decomposition of (A:B):(2(B:2D)):(3(C:D)),

the source term for C:D is added to the equation (vii).

3.3 GMA (General Mass Action)
Generally, metabolic reactions can be described using General Mass Action (GMA) or the Michaelis-Menten

equations (MM). GMA assigns each reaction to a mathematical term having a kinetic rate constant and power

coefficients regarding the concentrations of metabolites and enzymes, as described by:

1 1

[] [] ijk
nm

fi
ik j

k j

d X k X
dt = =

=∑ ∏ (A23)

where X1~Xn are the dependent variables, whose values vary with time, Xn+1~Xn+m are the independent variables,

whose values are fixed as constants, and ikk is the rate constant. We show an example for mathematical conversion

for metabolic reactions provided by:

 2121 PPSSoE +>+− . (A24)

The GMA conversion cancels the concentration of the enzyme-metabolite complex of E:S1:S2, thus the differential

equation for E:S1:S2 is not produced, as follows.

31 21
1 1 2

ff fdS kxg E S S
dt

= − (A25),

31 22
1 1 2

ff fdS kxg E S S
dt

= − (A27),

31 21
1 1 2

ff fdP kxg E S S
dt

= + (A28)

31 22
1 1 2

ff fdP kxg E S S
dt

= + (A29),

where kxg1 is the kinetic rate constant, fi are the power coefficients. If necessary, GMA produces the term for

spontaneous decomposition as follows:

KIT, Kurata Laboratory

18

fkxgS
dt
dS

−= . (A30)

3.4 MM (simplified Michaelis-Menten equations)
Generally, the Michaelis-Menten equations are able to describe complicated reactions with activators or inhibitors

based on their mechanism, where the concentrations of the enzyme-metabolite complexes are cancelled. The

CADLIVE Simulator further simplifies the Michaelis-Menten equations. This simplification enables one to convert

complicated metabolisms into simple forms efficiently. For example, the metabolic equations can be converted into

the simplified Michaelis-Menten type differential equations. The regulator-reaction equation:

 2121 PPSSoE +>+− (A31)

is converted to :

1 1 2
1

1 1 2 2

dS S SQ E
dt Kmich S Kmich S

= −
+ +

 (A32),

2 1 2
1

1 1 2 2

dS S SQ E
dt Kmich S Kmich S

= −
+ +

 (A33),

1 1 2
1

1 1 2 2

dP S SQ E
dt Kmich S Kmich S

= +
+ +

 (A34),

2 1 2
1

1 1 2 2

dP S SQ E
dt Kmich S Kmich S

= +
+ +

 (A35),

where mich1K and mich2K are the Michaelis-Menten constants. If necessary, this conversion also produces the

term for spontaneous decomposition as follows,

SKmich
SQ

dt
dS

+
−= (A36).

3.5 DAEs
In order to solve the stiffness in CMA expressing a gene regulatory network, the two-phase partition method (TPP)

has been proposed that divide biochemical reactions into two phases, binding and reaction phases, by applying

rapid equilibrium approximation or quasi-steady state approximation to complex formation, which greatly reduces

the number of kinetic parameters and remarkably accelerates the calculation speed. TPP is a powerful method that

is indispensable for mathematical simulation of gene regulatory networks.

3.5.1 Steady-state approximation I

The two-phase partition method begins with CMA and TT.

(1) The differential equation for the complexes that have been generated through a binding reaction is set as zero,

resulting in an algebraic equation. The generated equations are simplified. For example, when a + b + c + d = 0 and

b – d = 0 is generated, the former is replaced by a + c = 0.

(2) For the species that do not involve binding reactions and those whose attribute of "massBalance" is off, their

differential equations do not change.

KIT, Kurata Laboratory

19

(3) For the monomers that involve binding reactions and whose attribute of "massBalance" are on, the

concentrations of the monomer and its derivative complexes are all added, producing the differential equations for

their total concentration. For the species whose attribute of "massBalance" is off, they are not. For example, for the

species regarding the monomer A, the equations are made as follows:

dy[TA]/dt = differential equations for monomer A

+ Σ(differential equations for the complex that contains A as a component x the number of A that

the complex contains)

(4) The mass balance equations for the species whose "specieClass" is "monomer" is provided by:

 [TA] = [A] +Σ([complex that contains A as a component] x the number of A that the complex contains)

(5) After simplifying the DAEs, the differential equations whose right hand sides become zero are omitted, and the

species are registered as constant values.

The species are classified as follows:

A) Constant

The species whose attribute of "totalAmount" is constant, and whose "massBalance" is off.

 The species whose differential equation is zero (dy/dt=0).

B) Variables of algebraic equations

 The species whose class is "complex".

 The species whose class is "monomer" and whose "massBalance" is on.

C) Variables of differential equations

The total concentration of the species with the attribute of monomer and modified. (excludes the species whose

differential equation is zero (dy/dt=0).)

3.5.2 Steady-state approximation II

The algebraic equations at the steady state are further simplified by setting kpd = 0.

3.5.3 Rapid equilibrium approximation

The algebraic equations at the steady state are further simplified by setting kpd, kx << ka, kd. In addition, the

association constant of Kb is substituted for ka/kd. For example, the regulator-reaction equation:

mA + nB <-> mA:nB (A37)

is converted to the algebraic equation:

[mA:nB] = Kb^(m*n)*[A]^m*[B]^n. (A38)

For example, the general enzyme reaction (A16) is converted into DAEs using the rapid equilibrium
approximation, as follows,

KIT, Kurata Laboratory

20

1 1 2 2
1

0 [] [: : :]j
n

j n n
j

K A A A Aα

=

= − ⋅ +∏ α α α… (A39),

1 1 2 2[] [] [: : :] (1,...,)i i i n nTA A A A A i n= + =α α α α… (A40)

1 1 2 2
[] [: : :] (1,...,)i

i n n
d TA kx A A A i m

dt
β= − ⋅ ⋅ =α α α… (A41)

1 1 2 2
[] [: : :] (1,...,)i

i n n
d B kx A A A i m

dt
β= ⋅ ⋅ =α α α… (A42)

where K is the association constant that is provided by (/a dk k).

3.5.4 Complexes in TPP

We illustrate in detail how TPP derives the differential equations for the total amount of specific species and their

mass balance equations. The regulator-reaction equation:

A + 2B <-> A:2B (A43)

is converted into the CMA:

d[A]/dt = - ka[A][B]^2 + kd[A:2B] (A44)

d[B]/dt = - 2ka[A][B]^2 + 2kd[A:2B] (A45)

d[A:2B]/dt = + ka[A][B]^2 – kd[A:2B] (A46).

We apply TPP to the CMA by setting the equation (A46) as zero, producing the differential equations for the total

concentrations (TA, TB) for the components of A and B. In order to make the differential equation for TB, we

recursively search all the components of the complexes to find the species that contain B as a component, and add

them to the differential equation. They are multiplied by the number of B contained in the complexes

d[TB]/dt = the right hand side of (A45) + the right hand side of (A46) x 2

= Σ(the right hand sides of the CMA for the species that contains B as a component x the number of B

that the species contains)

In the same manner, the mass balance equation for TB is produced as follows:

[TB] = [B] + [A:2B] x 2

= Σ(the concentrations of the species that contain B as a component x the number of B that the species

contains)

3.6 S-system
Sensitivity and stability analysis shows how a biochemical system responds to perturbations or uncertainties.

S-system is able to analyze the various sensitivities of the system at the steady state in symbolic form. In the

simulator, ordinary differential equations such as TT, CMA, GMA, and MM can be converted into S-system to

analyze the sensitivities and stability at the steady state.

The ordinary differential equations are divided into the positive terms and negative terms:

KIT, Kurata Laboratory

21

−+ −= ii
i VV

dt
dX

 , (i = 1,....,n,....n+m) （A47）,

where +
iV is the sum of positive terms, and −

iV is the sum of negative terms. Generally, S-system is given by:

∏∏
+

=

+

=

−=
mn

j

h
ji

mn

j

g
ji

i ijij XX
dt

dX

11

βα （A48）,

where X1 - Xn are the dependent variables, whose values vary with time, and Xn+1 - Xn+m are the independent

variables, whose values are fixed as constants. When the concentrations of the dependent variables are given at the

steady state, the coefficients (, , ,ij ij i ig h α β) of S-system are solved from Eq. (A48) in symbolic form:

i j
ij

j i

V X
g

X V

+

+

∂
=
∂

　 (A49),

i j
ij

j i

V X
h

X V

−

−

∂
=
∂

 (A50),

1

ij

i
i n m

g
j

j

V

X

+

+

=

=

∏
α (A51),

1

ij

i
i n m

h
j

j

V

X

−

+

=

=

∏
β (A52),

where ijg and ijh are the kinetic order and iα and iβ are the rate constants.

3.7 Connection between layers
When DAEs express the gene-protein layers, and GMA or MM expresses the metabolic layer, dependent variables

for the regulators that appear as modifiers in the metabolic layer correspond to dependent variables for the

gene-protein layers. Table A4 shows how to connect the corresponding variables between the gene-protein layer

and the metabolic layer. The combination of the values of the attributes of "isToal", "massBalance" and the method

for conversion determines the variables that appear as a modifier in the metabolic layer.

KIT, Kurata Laboratory

22

Table A4 Connection between layers

Conversion method for
Gene-Protein layer massBalance isTotal

The variable of E that appears as a modifier

in the metabolic layer
true Total concentration of enzyme: T_E.cyt on false y[E.cyt]
true Total concentration of enzyme T_E.cyt CMA

off false y[E.cyt]
true y[TE.cyt] on false x[E.cyt]
true Total concentration of enzyme T_E.cyt DAEs (TPP)

off false y[E.cyt]

 The total concentration of the enzyme E is the total amount of E and the complexes that contain E as a

component. For example, when TE consist of E, E:A:B, and E:C, the total concentration for the enzyme E is given

by:

 T_E.cyt = y[E.cyt] + y[E:A:B.cyt] + y[E:C.cyt] (A53)

4. Selection of conversion methods
Selection of conversion methods is carried out for the two systems: gene-protein layer and metabolic layer.

4.1 Gene-protein layer
For the gene-protein layers, users select four types of conversion methods: CMA, TPP_STEADYSTATE_1,

TPP_STEADYSTATE_2, and TPP_RAPID, which are suitable for converting the regulator-reaction equations that

generate various complexes. The gene-protein layer can be converted into GMA or MM, but it is not practically

useful. Thus, such conversions are error.

4.2 Metabolic layer
For the metabolic layer, GMA and MM are generally employed. It is possible to convert the metabolic layer by

using CMA or TPP, but it is not useful practically.

4.3 Connection between the layers
Since the different conversion methods are applied to the gene-protein and metabolic layers, the differential

equations for the species common to both layers have to be combined to make one differential equation, which

enables one to simulate the three layers together.

KIT, Kurata Laboratory

23

B. CHECKDAE

1 Objectives
The variables employed in the checkdae file are named by the index made of the combination of species' name and

its localization, as exemplified by y[RNAP.cyt], so that users can understand the meaning of the variables. However,

in order for computers to simulate mathematical equations (TT, CMA, GMA, MM, DAEs, S-system), it is required

to replace the indexes of variable names by sequential integers, to make the user functions for mathematical

equations, and to produce their Jacobian function that is the partial derivatives of the user functions with respect to

each variable in symbolic form. The checkdae module generates computer-readable parameters, mathematical

functions, and their Jacobian. These functions and parameter files are described in the C programming language.

 The checkdae module examines if a checkdae file (mathematical equations), which the parsedae module has

generated or users have edited manually, is acceptable for converting it into simulation programs (user functions

and parameters). The checkdae module generates not only the user functions for mathematical equations and their

associated Jacobian, but also temporary mathematical expressions such as fluxes. In addition, the checkdae module

is able to convert ordinary differential equations (TT, CMA, GMA, MM) into S-system at the steady state,

generating the user functions for S-system with its associated coefficient functions and their parameters.

Simultaneously, it creates the parameter files for setting initial values and kinetic parameters.

In summary, from a checkdae file, the checkdae module creates the five files: a parameter file, a user function file,

a temporary mathematical expression file, an S-system coefficient file, and an S-system user function file.

2. Function
Finishing checking the grammar of a mathematical model (checkdae file), the checkdae module divides it into the

nodes consisting of one operator in order to expand them on a binary tree structure. The checkdae first examines if

the employed parameters and variables are defined in a checkdae file. Second, it converts the index of species'

names to the numerical one, and solves the partial derivatives of the mathematical equations to obtain their Jacobian

in symbolic form, resulting in a user function file with a parameter file that contains initial values and kinetic

constants. The use of GMA or MM conversion creates another file that contains the temporary mathematical

expressions for its fluxes. When S-system is employed, it produces an S-system coefficient file and an S-system

user function file.

2.1 Grammar check for mathematical models
The checkdae examines the correctness of the checkdae file (mathematical equations) and temporary mathematical

expressions from the standpoint of grammar, which are restricted to five operators consisting of addition (+),

subtraction (-), multiplication (*), division (/), and power (^). The symbols except numbers are all regarded as

variables.

KIT, Kurata Laboratory

24

2.2 Expansion to mathematical equation trees
Mathematical equations are expanded on binary trees whose nodes consist of an operator. The subsequent

operations are carried out based on the binary trees.

2.3 Function for checking parameters and variables
This function checks if the variables, parameters, and temporary mathematical expressions employed in

mathematical equations have been defined in the checkdae file.

2.4 Function for expanding temporary expressions
The temporary mathematical equations are expanded to generate a user function, and then the temporary equations

are removed from the user function.

2.5 Function for indexing variables and parameters
The sequential integers are provided for all the variables and parameters that users have defined.

2.6 Function for replacing the indexes
The numerical indexes are substituted for the variables named with the combination of species' name and its

compartment.

2.7 Symbolic partial differentiation
The partial derivatives are solved with respect to the variables of interest in symbolic form.

2.8 Function for S-system conversion
Ordinary differential equations are converted into S-system. The detailed explanation is described elsewhere.

2.9 Parameter survey
Users are able to explore the parameter spaces by using the parameter file, where the values of parameters are

varied in the arithmetic or geometric series. Details are described in the parameter file (3.2.2).

3 Specification of input and output
3.1 Specification of input
The checkdae module reads the checkdae file (mathematical equations) to make the user functions and their

associated parameter files necessary for simulation. The details of the checkdae file are explained in the instruction

of the parsedae module.

3.2 Specification of output
3.2.1 User function file

The user function consists of mathematical equations and their Jacobian. The Jacobian is obtained in symbolic form

KIT, Kurata Laboratory

25

by solving the partial derivatives of mathematical equations with respect to each variable. The user function

contains two functions: usr_fvec and usr_fjac, as follows.

/*
 * TITLE:test
 * INFO:test
 * CONVERSION TYPE
 * GENE-PROTEIN:TPP_RAPID
 * METABOLIC:NONE
 */

#include "life.h"

void usr_fvec(double fvec[], double y[], double Gene, Parameter *p)
{
 double *constantPlayer = p->val[1];
 double *Kb = p->val[2];
 double *kp = p->val[3];
 double *kpd = p->val[4];
 double *km = p->val[5];
 double *kmd = p->val[6];

 fvec[1] = y[12] - (y[1] + y[6] + y[7] + pow(y[8], 1.5));
 fvec[2] = constantPlayer[2] - (y[2] + pow(y[6], 2) + pow(y[7], 2) + pow(y[8], 3));
 fvec[3] = constantPlayer[3] - (y[3] + pow(y[7], 1.5) + y[10]);
 --- omission ---
 fvec[12] = -kpd[1]*y[1] - kpd[2]*y[6] - kpd[3]*y[7] - 1.5*kpd[4]*y[8];
 fvec[13] = kp[1]*y[11] - kpd[5]*y[5] - kpd[6]*y[9] - kpd[7]*y[10];
}

void usr_fjac(double fjac[][MAX_VAR_NUM], double y[], double Gene, Parameter *p)
{
 double *constantPlayer = p->val[1];
 double *Kb = p->val[2];
 double *kp = p->val[3];
 double *kpd = p->val[4];
 double *km = p->val[5];
 double *kmd = p->val[6];

 fjac[1][1] = -1;
 fjac[1][6] = -1;
 --- omission ---
 fjac[13][9] = -kpd[6];
 fjac[13][10] = -kpd[7];
 fjac[13][11] = kp[1];
}

Equations are indexed in the sequential order of algebraic and differential equations. Variables are marked by "y".

The fjac is described only when its value is nonzero.

3.2.2 Parameter file

The checkdae module outputs the parameter file for setting initial values and kinetic parameters. The line up of

PARAM_NAME corresponds to the numerical index order of the parameters in the user function. When users gave

KIT, Kurata Laboratory

26

values to parameters and initial concentrations in the chekdae file, the values appeared at the corresponding order of

PARAM_NAME.

Model ################
TITLE:test
INFO:test
CONVERSION TYPE
GENE-PROTEIN:TPP_RAPID
METABOLIC:NONE
N_VAR ; 13; # num of variables(all)
N_ALGEBR; 10; # num of variables(Algebraic Eq)

#Y_START ; index; initial_value; tag #comment
Y_START ; 1; 1.2000e+00; A.cyt #
Y_START ; 2; 2.1000e+00; B.cyt #
Y_START ; 3; 3.1000e+00; C(pro).cyt #

 --- omission ---
Y_START ; 11; 1.0000e-01; mRNA(test).cyt #
Y_START ; 12; 1.7650e+00; TA.cyt #
Y_START ; 13; 6.0000e-02; Ttest.cyt #

#PARAM;name;index;val;val_start;num_survey;D/R/S;change-val;GA_start;GA_end;tag #comment
PARAM ;constantPlayer; 1; 1.2000e+00;;0;D;;;; G(test).cyt #
PARAM ;constantPlayer; 2; 3.2300e+00;;0;D;;;; TB.cyt #

 --- omission ---
PARAM ;kmd ; 1; ;;0;D;;;; decomposition_rate_constant_mRNA(test).cyt #

#T_EVENT ; name; index; time; value; #comment

######## Don't edit the following lines. ######
PARAM_NAME ;constantPlayer #
PARAM_NAME ;Kb #
PARAM_NAME ;kp #
PARAM_NAME ;kpd #
PARAM_NAME ;km #
PARAM_NAME ;kmd #

The checkdae module also implements the function for surveying kinetic parameters to investigate the behavior

of a model over a specific range of the values of some parameters. This allows users to effectively study the

dependency of the model's behavior on the kinetic parameters, and is therefore a very effective means of forecasting

the effects of parameter perturbations.

Details of the #PARAM line are explained as follows,

name: the name of the parameter

index: the index of the parameter

val: the value of the parameter

val_start: the starting value of the parameters, which must be set as the same value as "val" when the parameter

survey is carried out.

KIT, Kurata Laboratory

27

num_survey: the number of surveyed parameters. When the parameter survey is not performed, set one (1).

D/R/S: The option for the parameter survey. "D" indicates arithmetic series, "R" indicates geometric series, and "S

"means the parameter search by GAs or RS (Details are written elsewhere).

change_val: changing value.

GA_start; The starting value of the explored variable region, which is employed for search for GAs or RS.

GA_end; The ending value of the explored variable region, which is employed for search for GAs or RS.

For example, when users change the parameter kx[3] as 1, 2, 3, and 4 in the arithmetic series, the line of #PARAM

is provided by:

PARAM ;kx; 3; 1; 1 ; 4; D; 1; ; ; tag #

When users change the parameter kx[3] as 1, 2, 4, and 8 in the geometric series, the line of #PARAM is provided

by:

PARAM ;kx; 3; 1; 1 ; 4; R; 2; ; ; tag #

3.2.3 Temporary mathematical expression file

When temporary mathematical equations such as a flux and total enzyme are defined in the checkdae file, the

corresponding user function is generated automatically. The temporary expressions appear in the checkdae file,

when GMA or MM conversion is selected. Mathematical equations for fluxes are shown as follows.
/*
 * TITLE:test
 * INFO:test
 * CONVERSION TYPE
 * GENE-PROTEIN:TPP_RAPID
 * METABOLIC:NONE
 */
#include "life.h"

void usr_flux(double total[], double flux[], double y[], double Gene, Parameter *p)
{
 double *constantPlayer = p->val[1];
 double *Kb = p->val[2];
 double *kp = p->val[3];
 double *kpd = p->val[4];
 double *km = p->val[5];
 double *kmd = p->val[6];
 double *Kg = p->val[7];
 double *f = p->val[8];

 flux[1] = Kg[1]*pow(y[1], f[1]); /* flux_A.cyt_to_B.cyt */

 /* No Total expression. */
}

3.2.4 S-system coefficient file

The S-system coefficient file is used for calculating the coefficients of S-system at the steady state, which are sent

KIT, Kurata Laboratory

28

to the program for the sensitivity and stability analysis of S-system.

/*
 * TITLE:Glycolysis.plc
 * INFO:Glycolytic-Glycogenolytic Pathway Model in Chapter 11 PLUS
 */

#include "life.h"

void get_GHdata(double **gd, double **gi, double **hd, double **hi,
 double *v_plus, double *v_minus, double *y, Parameter *p)
{
 double *constantPlayer = p->val[1];

 v_plus [1] = 0.0778843*pow(constantPlayer[1], 0.66)*constantPlayer[3];
 gi[1][1] = 0.66*pow(constantPlayer[1], -0.34)*0.0778843*constantPlayer[3];
 gi[1][3] = 0.0778843*pow(constantPlayer[1], 0.66);
 v_minus[1] = 1.06271*pow(y[1], 1.53)*pow(y[2], (-0.59))*constantPlayer[4];
 hd[1][1] = 1.53*pow(y[1], 0.53)*1.06271*pow(y[2], (-0.59))*constantPlayer[4];
 hd[1][2] = (-0.59)*pow(y[2], (-0.59) - 1)*1.06271*pow(y[1], 1.53)*constantPlayer[4];
 hi[1][4] = 1.06271*pow(y[1], 1.53)*pow(y[2], (-0.59));

--- omission ---
 gi[3][5] = 0.000793456*pow(y[2], 3.97)*pow(y[3], (-3.06));
 v_minus[3] = 1.05881*pow(y[3], 0.3)*constantPlayer[6];
 hd[3][3] = 0.3*pow(y[3], -0.7)*1.05881*constantPlayer[6];
 hi[3][6] = 1.05881*pow(y[3], 0.3);
}

void get_GHnum(int *n_var, int *n_const)
{
 *n_var = 3;
 *n_const = 7;
}

4 Data structure

4.1 Main structures

EqSystem_T
 |
 +-int n_var total number of variables = n_varX + n_varY
 +-int n_varX number of x variables
 +-int n_varY number of y variables
 +-int n_mid number of temporary mathematical expressions
 +-int n_equation number of equations (n_varX + n_varY)
 +-int n_param number of parameter species (containing constantPlayer)
 |
 +-Variable_T *var(n_var) variable arrays
 | |
 | +-int index

KIT, Kurata Laboratory

29

 | +-char *tag molecular name
 | +-double val
 | +-int f_isX x or y flags
 | +-int f_isUsed flags for use or non-use
 |
 +-Expression_T *mid(n_mid) array for temporary mathematical expressions
 | |
 | +-int f_isXorT (X/Y or) Total/Flux flag
 | +-char *name left hand side equations (identification name)
 | +-char *expr expanded equations
 | |
 | +-Node_T *root expanded equations in binary trees (list)
 |
 |
 +-Expression_T *equation(n_varX + n_varY) array for mathematical expressions
 | |
 | +-int f_isXorT x or y flags
 | +-char *name Y: it is used, X: it is not used.
 | +-char *expr expanded equations
 | |
 | +-Node_T *root expanded equations in binary trees (list)
 |
 +-ParamBase_T *param_base(n_param) array for parameter species
 |
 +-char *label ka, kb, etc
 +-int max_index maximum index
 +-int f_isUsed flags for use or non-use
 |
 +-Parameter_T *param(max_index) array for each parameter species
 |
 +-char *tag content
 +-double val
 +-int f_isUsed flags for use or non-use

4.2 Node_T structure
In pdiff.h, the definition of the Node_T structure, which is key to mathematical derivations, is provided as follows.

typedef struct _node {
 char op;
 int rank;
 int f_bracket;
 int f_chunk;
 struct _node *parent;
 struct _node *childL;
 char *charL;
 int rank_charL;
 struct _node *childR;
 char *charR;
 int rank_charR;
 char *expr;
 int rank_expr;
 char *diff;
 int rank_diff;
} Node_T;

KIT, Kurata Laboratory

30

This structure is generated with respect to an operator (+ , -, *, / , or ^). Mathematical equations are expressed by

linking the structures in a binary tree. Binominal operations are carried out, but it is possible to define '-' as a single

operator. In this case, neither childL nor charL is defined. In the other cases, operands are defined in both the right

and the left. For example, the left operand is defined either as charL or childL. If the operand is provided as charL,

rank_charL defines the value that identifies either numerical values (R_5VAL) or strings (R_4CHAR), where

childL is NULL. Conversely, if the operator is defined as childL, charL is NULL and rank_charL is provided by

R_NULL. The right operand is defined in the same manner.

The others are as follows.

char op;

define an operator of the node (+, -, *, / , or ^)

int rank;
 define the priority value of operators (R_1PLUS、R_MULT、R_3POW) to the above operator.

int f_bracket;

frag necessary for handling "(" on the way to expansion of equations.

int f_chunk;
flag showing that the operation of the node employs brackets.

struct _node *parent;

pointer to the parent

char *expr;
registering mathematical expressions

int rank_expr;

showing the rank of the above mathematical expressions, which defines R_**.

char *diff;
registering mathematical expressions that are partially differentiated.

int rank_diff;

showing the rank of the above mathematical expressions, which defines R_**.

In order to identify the priority of an operator and the order of operations, rank** is provided as follows.

R_NULL :not defined
R_1PLUS :addition or subtraction, or mathematical expression containing them
R_2MULT :multiplication or division, or mathematical expression containing them but excluding addition

and subtraction
R_3POW :power, or mathematical expression consists of powers.
R_4CHAR :variables (in mathematical expression)
R_5VAL :values (in mathematical expression)

5 Procedure
The relationships of functions are described in a tree structure. The functions followed by ‘…’ indicates that they

have been already called. The functions preceded by ‘…’ are recursive functions.

KIT, Kurata Laboratory

31

main
 +-my_init setting file names
 +-Read_data read data
 | +-split_dae_file division of a checkdae file, read the numbers of data
 | +-allocate_area memory allocation for data
 | +-read_param_base read parameter labels.
 | | +-divide_line Strings are sectioned by '=' or ';'
 | +-read_param read parameters
 | | +-read_param_index obtain the maximum number of parameters
 | | | +-divide_line ...
 | | | +-Divide_variable divide variable and parameter strings by '[' and ']'
 | | | +-FindParamBaseAddr examine if parameter labels are registered
 | | +-read_param_data read parameter data
 | | +-divide_line ...
 | | +-Divide_variable ...
 | | +-FindParamBaseAddr ...
 | +-read_var read variables
 | | +-divide_line ...
 | | +-Divide_variable ...
 | +-read_mid_expression read temporary mathematical expressions
 | +-fix_equation_line rearrangement of equations
 | | +-Trim_tail trim line ends
 | | +-divide_line ...
 | +-read_equation read differential and algebraic equations
 | +-fix_equation_line ...
 | +-divide_line ...
 | +-Divide_variable ...
 +-set_expression expand mathematical equations in a binary tree.
 | +-Make_node expand mathematical equations in a tree structure
 | | +-create_node create nodes
 | | +-get_token read mathematical equations
 | | +-check_token check the grammar of mathematical equations
 | | +-add_emptyChild create blank child nodes
 | | | +-create_node ...
 | | +-seek_bracket search a node whose flag is '('
 | | | +-... seek_bracket ...
 | | +-del_node delete nodes
 | | +-set_oprator set operator information
 | | +-insert_childNode insert child nodes
 | | | +-create_node ...
 | | +-seek_same search equivalent or less prior nodes
 | | | +-... seek_same ...
 | | +-insert_parentNode insert a parent node
 | | | +-create_node ...
 | | +-set_operand a set of operands
 | +-Set_expr reconstruct mathematical equations based on a tree structure
 | | +-... Set_expr ...
 | | +-del_bracket delete brackets
 | | +-add_bracket add brackets
 | +-check_node check nodes recursively
 | +-... check_node ...
 | +-replace_variable replace with numerical indexes
 | | +-Divide_variable ...
 | | +-getVarIndex obtain numerical indexes for variable names
 | +-check_detail check nodes
 | +-Divide_variable ...

KIT, Kurata Laboratory

32

 | +-findMidAddr examine if temporary mathematical expressions are registered
 | +-expand_mid expand temporary mathematical expressions
 | | +-Make_node ...
 | | +-Seek_root obtain the address of a root node
 | | | +-... Seek_root ...
 | | +-Set_expr ...
 | +-findVarAddr examine if variables are registered
 | +-FindParamBaseAddr ...
 | +-setUsedParam Add flags to employed parameters
 +-set_param_flag examine if parameter labels are used or not
 +-set_variable_index assign numerical indexes to variables
 | +-getDiffEqAddr obtain the address for registering differential equations
 +-set_numerical_index replace with numerical indexes
 | +-check_node ...
 | +-Set_expr ...
 +-Write_usrfunc create user functions for simulator
 | +-write_header write header information
 | +-write_param_label write information that relates parameters
 | +-Make_diff symbolic partial differentiation
 | +-... Make_diff ...
 | +-diff_add partial differentiation for addition
 | | +-del_bracket ...
 | +-diff_subtract partial differentiation for subtraction
 | | +-del_bracket ...
 | +-diff_multiply partial differentiation for multiplication
 | | +-multiply multiplication
 | | +-del_bracket ...
 | +-diff_divide partial differentiation for division
 | | +-multiply ...
 | +-diff_power partial differentiation for power
 | | +-multiply ...
 | | +-del_bracket ...
 | +-add_bracket ...
 +-Write_paramFile create parameter files
 | +-write_header ...
 +-Write_flux create temporary mathematical expression files
 | +-write_header ...
 | +-write_param_label ...
 |

+-Set_Ssystem write S-system user function files
 +-write_GEhead write the header part of the file that defines g and h
 | +-Write_header ...
 | +-Write_param_label ...
 +-make_Sdata write the core part of S-system user functions
 | +-Set_expr ...
 | +-separate_terms divide differential equation into V+ and V-
 | +-get_preGH writhe g, h, V+, and V-
 | | +-Del_tree delete unnecessary expansion trees
 | | | +-... Del_tree ...
 | | +-Make_node ...
 | | +-Set_expr ...
 | | +-Make_diff ...
 | +-write_Sfvec write fvec in a temporary file
 | +-write_Sfjac write fjac in a temporary file
 +-write_GEtail write the end part of the file that defines g and h
 +-write_S_usrfunc write S-system user function file
 +-Write_header ...

KIT, Kurata Laboratory

33

 +-write_S_funcs write S-system differential equations

Main procedures are explained as follows.

5.1 Input procedure (Read_data)
5.1.1 Reading checkdae files: data split and data number acquisition (split_dae_file)

A checkdae file is read as input data, and divided according to the identification lines. The divided data are sent to a

temporary file. The numbers of various data are obtained by counting semicolons. Each valid data has one

semicolon.

5.1.2 Index check and memory allocation (allocate_area).

After checking the numbers the have been obtained by split_dae_file, the memory necessary for structure arrays for

the employed parameters are allocated.

5.1.3 Reading parameter labels (read_param_base)

After reading the parameter labels from the temporary file generated by split_dae_file, the parameter labels and

constantPlayer are registered in ParamBase_T.

5.1.4 Reading parameters (read_param)

The maximum number of each parameter species is read from the temporary file generated by split_dae_file, and

the memory necessary for the parameter arrays is allocated (by read_param_index). Then the data is read again and

registered in Parameter_T (by read_param_data).

5.1.5 Reading variables (read_var)

The variables are read from the temporary file generated by split_dae_file, and registered in Variable_T. The

correctness for the assigned indexes is checked.

5.1.6 Reading temporary mathematical expressions (read_mid)

The temporary mathematical expressions are read from the temporary file generated by split_dae_file, and remade

by fix_equation_line into another temporary file. The remade data are read, and registered in Expression_T.

5.1.7 Reading differential equations and algebraic equations (read_equation)

The files for differential equations and algebraic equations that have been generated by split_dae_file are rewritten

by fix_equation_line in other temporary files. From which, equation data are read and registered in Expression_T.

In processing algebraic equations, the right-hand equations are moved to the left. The resultant left-had side is

registered as expr. In processing differential equations, the right-hand side is registered in expr. The index of the

left-hand side equation is registered as name.

KIT, Kurata Laboratory

34

5.2 Expansion of mathematical equations in a tree structure (set_expression、Make_node)
The temporary mathematical expressions, differential equations, and algebraic equations, which are registered as

expr in Expression_T, are expanded in a tree structure by Make_node, where Node_T is employed as nodes. In

Make_node, the root node is made as a current node. The strings of mathematical equations are sectioned by an

operator, an operand, or brackets (by the get_token), and their grammar is checked (by check_token). According to

the data, a new node is linked to the current node as a parent or a child. This process is iterated until the whole

equations are read. Consequently, expr registers the expanded mathematical equations in a node tree. After

expansion, mathematical expressions are reconstructed based on the generated tree (by Set_expr function).

Important functions in Make_node are follows.

5.2.1 Reading mathematical expression (get_token)

Strings of mathematical expressions are read by a character, grouped by an operator, an operand, or brackets, and

registered in the structure of Token_T. Token_T is as follows:

typedef struct _token {
 char op; operator or parentheses: '+ ', '(', variable: ’a’, value: ‘v’
 int rank; operator:R_PLUS、R_MULT or R_POW. others: R_NULL。
 char *expr; pointers to strings of variables and values
 int bra; counter for '(' (check_token)
 int cket; counter for ')' (check_token)
} Token_T;

The index within [] is recognized as characters. All the blanks are eliminated during pursing.

5.2.2 Checking mathematical expression (check_token)

The correctness of the data read by get_token and the balance of brackets are checked.

5.2.3 Adding a blank child node (add_emptyChild)

If the operator of the current node is set, a blank child node is added to the right. Otherwise, it is added to the left.

5.2.4 Inserting a child node (insert_childNode)

A new child node is inserted as the right hand of the current node. The new node receives the right-hand

information of the parent node as the left-hand information.

5.2.5 Inserting a parent node (insert_parentNode)

A new node is inserted as the parent node of the current node. The current node is the right-hand child node of the

new node.

5.2.6 Deleting nodes (del_node)

It the extra number of brackets are found, the unnecessary nodes are eliminated.

KIT, Kurata Laboratory

35

5.2.7 Searching equivalent or less prior nodes (seek_same)

When the operator that has been read shows a high priority to the current node, it is defined as a child node of the

current node. However, when the operator shows a less priority or equivalence to the current, the nodes, whose

priority is equivalent or less than the operator, whose flag is '(', or whose operator is not defined, are searched in the

direction of the root, placing the operator node in the correct position. If the node is not found, return the root.

5.2.8 Reconstructing mathematical expressions (Set_expr)

Mathematical expressions are reconstructed recursively from the expanded binary tree by Make_node. Numerical

values are calculated when they appear.

5.3 Checking variables (check_node、check_detail)
All the variables, parameters, and temporary mathematical expressions that are defined in cahrL and charR of each

node of a binary tree are recursively checked (by check_node). If there are non-defined values, the program will

stop and display "error". In the case of variables and parameters, the flag of f_isUsed is put up. In the case of

temporary mathematical expressions, they are expanded in a tree by expand_mid.

5.4 Expanding temporary mathematical expressions (expand_mid)
When a temporary mathematical expression is contained in a mathematical equation, the expression is expanded in

a binary tree by Make_node. The generated tree is connected to the child node of the mathematical equation. Finally,

the bound expressions are reconstructed by Set_expr.

5.5 Assigning an index to a variable (set_variable_index)
Integer consecutive numbers are assigned to the employed variables.

5.6 Converting variables (set_numerical_index, check_node, replace_variable)
After searching the nodes that set variables (by check_node), the name-indexed variables are replaced by integer

indexes (by replace_variable). After replacement, the resultant expressions are reconstructed by Set_expr.

5.7 Symbolic partial differentiation (Make_diff)
Each term for the expanded mathematical equations is partially differentiated from the root node. The process is

carried out recursively. The partial differentiation is applicable to the five operators:

addition :diff_add

subtraction :diff_subtract

multiplication :diff_multiply

division :diff_divide

power :diff_power

KIT, Kurata Laboratory

36

The Diff_T structure is employed to send and receive data.

typedef struct _diff {
 int rank_exprL;
 int rank_exprR;
 int rank_diffL;
 int rank_diffR;
 char exprL[BUFFSIZE];
 char exprR[BUFFSIZE];
 char diffL[BUFFSIZE];
 char diffR[BUFFSIZE];
} Diff_T;

Make_diff is called to make Jacobian, which is defined as a user function.

5.8 Output process

5.8.1 Output of user functions for simulators (Write_userfunc)

There are two types of user functions: usr_fvec and user_fjac. The usr_fvec consists of algebraic and differential

equations that have been expanded and replaced with numerical indexes. The user_fjac is the Jacobian, where the

variable is partially differentiated with respect to each variable. Note that the fjac whose value is zero is excluded.

First, the header part that has been obtained by split_dae_file is described as comments in the C language format,

and then usr_fvec and usr_fjac are output. In the user functions, the employed parameters are linked to the

parameter structure (write_param_label). In user_fvec, expr in the Expression_T structure that stores mathematical

expressions is output sequentially. In usr_fjac, Make_diff is applied to a differential equation with respect to each

variable, and the resultant Jacobian is output in order.

5.8.2 Output of parameter files (Write_paramFile)

First, the header part that has been obtained by split_dae_file is described as comments. Next, the initial value

setting part, parameter-setting part, and the data that relate them to the parameter labels are described. When the

initial values and parameter values are not set, blanks are output.

5.8.3 Output of temporary mathematical expression obtaining file (Write_flux)

Instead of usr_fvec, usr_flux is output that is the function to defines temporary mathematical expression The total

concentration of enzymes is defined as the array "total", that of fluxes as array of "flux". The original temporary

mathematical expressions are output as comments on the right-hand side of the equations.

5.9 S-system conversion（Set_Ssystem）
The S-system conversion is carried out with respect to each differential equation by make_Sdata, as follows:

KIT, Kurata Laboratory

37

1. Differntial equations are redescribed by Set_expr.

2. All the terms of the right-hand side are divided into V+ and V-, respectively, by separate_terms.

3. V+ and V- are output by get_preGH. Made_diff generates and writes
V
X
+∂

∂
 and.

V
X
−∂

∂
 The partial

differential formula are described separately with respect to the dependent or independent variables.

4. write_Sfvec writes the differential equations of S-system with respsect to the dependent variables.

5. write_Sfjac generate and write the Jacobian.

6. The resultant expression are output as the S-system coefficient file and S-system user function file.

3.2.5 S-system user function file

The checkdae module converts ordinary differential equations into S-system, generating the user function of

S-system, as follows.

/*
 * TITLE:Glycolysis.plc
 * INFO:Glycolytic-Glycogenolytic Pathway Model in Chapter 11 PLUS
 */
/*

#include "life.h"

void usr_fvec(double fvec[], double y[], double Gene, Parameter *p)
{
 double *constantPlayer = p->val[1];
 double *kplus = p->val[2];
 double *kminus = p->val[3];
 double *g = p->val[4];
 double *h = p->val[5];

 fvec[1] = kplus[1]*pow(constantPlayer[1],g[1])*pow(constantPlayer[3],g[2])

 - kminus[1]*pow(y[1],h[1])*pow(y[2],h[2])*pow(constantPlayer[4],h[3]);
--- omission ---

 fvec[3] = kplus[3]*pow(y[2],g[8])*pow(y[3],g[9])*pow(constantPlayer[5],g[10])
- kminus[3]*pow(y[3],h[7])*pow(constantPlayer[6],h[8]);

}

void usr_fjac(double fjac[][MAX_VAR_NUM], double y[], double Gene, Parameter *p)
{
 double *constantPlayer = p->val[1];
 double *kplus = p->val[2];
 double *kminus = p->val[3];
 double *g = p->val[4];
 double *h = p->val[5];

 fjac[1][1] = - kminus[1]*h[1]*pow(y[1],h[1]-1)*pow(y[2],h[2])*pow(constantPlayer[4],h[3]);
 fjac[1][2] = - kminus[1]*pow(y[1],h[1])*h[2]*pow(y[2],h[2]-1)*pow(constantPlayer[4],h[3]);

--- omission ---
 fjac[2][3] = - kminus[2]*pow(y[2],h[4])*h[5]*pow(y[3],h[5]-1)*pow(constantPlayer[5],h[6]);
 fjac[3][2] = kplus[3]*g[8]*pow(y[2],g[8]-1)*pow(y[3],g[9])*pow(constantPlayer[5],g[10]);

KIT, Kurata Laboratory

38

 fjac[3][3] = kplus[3]*pow(y[2],g[8])*g[9]*pow(y[3],g[9]-1)*pow(constantPlayer[5],g[10])
- kminus[3]*h[7]*pow(y[3],h[7]-1)*pow(constantPlayer[6],h[8]);

}

KIT, Kurata Laboratory

39

C. SOLVER

1. Introduction
Two distinct types of simulation can be carried out: (i) time course simulation, where the values of variables are

determined as a time series; (ii) steady state analysis, where the values of variables are determined for a state in

which metabolite concentration does not change. For differential equations, the CADLIVE Simulator implements

the Runge-Kutta method, the step-adaptive Runge-Kutta method, and the NDF that can be applied to highly stiff

differential equations. The NDF has been programmed based on ode15s of MATLAB. The Runge-Kutta or the

step-adaptive Runge-Kutta method is employed for non-stiff differential equations. The Newton-Raphson algorithm

is employed to solve algebraic equations. The combination of the Newton-Raphson algorithm with the Runge-Kutta

or with the step-adaptive Runge-Kutta method, or the NDF solves DAEs. The solver not only simulates dynamic

behaviors of biochemical networks, but also solves the steady state solutions by applying the quasi-steady state

approximation to all the differential equations, resulting in generating algebraic equations. The Newton-Raphson

method solves such algebraic equations to obtain the steady state concentrations. In order to enhance the calculation

rate, the CADLIVE Simulator employs the Message-Passing Interface (MPI) for parallel calculation.

2. Analysis types
As "Analsys type", users can choose either "Dynamic” or "Steady-state". "Dynamic" simulates the time evolution

of the concentrations by calculating DAEs, and "Steady-state" calculates the concentrations at steady state by

solving algebraic equations. The checkbox of "Parameter survey" determines if the simulator surveys the parameter

space. Checking the checkbox of "Parallel calculation" carries out parallel calculation that employs the Message

Passing Interface (MPI). Notice that the checkbox of "Parallel calculation" cannot be selected prior to checking the

parameter survey.

3. Input for control data
The control parameters for the solvers are described as Table C1-C3. How to provide the value is shown in the

examples (CADLIVE web page).

KIT, Kurata Laboratory

40

Table C1 Control parameters for differential equations

Solver Type
Runge-Kutta
Runge-Kutta (Adaptive step-size)

Constructed based on "Numerical Recipes in
C" (Cambridge University Press)

NDF Constructed based on ode15s of MATLAB
Set time span and time step-size.
Start time The start time of simulation
End time The end time of simulation
(Initial)time step-size Initial time step size
Monitoring interval The simulated time course is picked up by the

monitoring interval value.

Table C2 Control parameters for algebraic equations

Solver type
Newton-Raphson Method Constructed based on "Numerical Recipes in

C" (Cambridge University Press)
Maximum trial times The number of iterated calculations
Tolerance for convergence of functions Convergence condition
Tolerance for convergence of variables Convergence condition
Ratio of changing parameters When the value for kinetic parameter is

changed, the value should be varied by the
ratio of changing parameters. Because the great
change in the kinetic parameter sometimes
causes the calculation to fail.

change width calc. sensitivity (STD). The ratio of perturbation that is given to
parameters is set as STD.
This is used for analyzing the sensitivity of
models.

Table C3 Other parameters

Other
G-value Always 1.0
Y default value default values for y (molecular concentrations)

KIT, Kurata Laboratory

41

D. MERGEPARAM

1. Objectives
It is laborious and time-consuming to set many parameters manually. The mergeParams module helps users setting

parameters by copying or merging the existing data, which greatly reduces such laborious parameter setting. The

mergeParams module updates the current parameter file by a new parameter file.

2. Function
The mergeParams module updates the values for the variables, constants, and parameters of the current parameter

file by a new one according to their tags (#comment). The tags are added to all the variables, constants and

parameters in order to distinguish them. Comparing the new parameter values with the current parameter values, the

current parameters with the same tag as the new ones are updated, if necessary. When some values of the current

parameters have been already set, users can chose two types:

1) Only empty parameters are updated.

2) The values for all the current parameters are updated.

3. Input/output specification
The mergeParams module reads a new parameter file and the current file, and updates the current parameters by the

new ones. Both parameter files are text files, the lines to be merged are:

・ Y_START : the line starting from "Y_START". the initial values of variables.

・ PARAM : the line starting from "PARAM". the values of kinetic parameters.

This module processes only the lines to be merged, the other lines never be changed.

3.1 Y_START

Y_START ; index; initial_value; tag #comment

Each field is distinguished with semicolon";". The mergeParams skips the region preceded by "#". The tag

"#comment" distinguishes the parameters to be merged, and "initial_value" is merged.

3.2 PARAM

PARAM;name;index;val;val_start;num_survey;D/R;change-val;GA_start;GA_end;tag #comment

Each field is distinguished with semicolon";". The mergeParams skips the region preceded by "#". The tag

KIT, Kurata Laboratory

42

"#comment" distinguishes the parameters to be merged, and "val" is merged.

4. Command
Users use the mergeParams program on command lines as follows.

mergeParams –IMathParam.txt –Rinput.txt [–B]

 MathParam.txt is the current parameter file. The space between the file and the option is not allowed.

・ MathParam.txt input/output : the current parameter file

・ input.txt input : the parameter file that updates the current one.

The flag –B indicates that only empty parameters are updated.

No flag indicates that all the current parameters are updated.

5. Error message
"Too many parameters."

"Invalid line:

 LINE_TEXT"

"Cannot open FILENAME for reading."

"Cannot read parameters. (file = FILENAME)"

"Cannot open FILENAME for writing."

"Invalid argument !!"

"Too few arguments !!"

"Cannot import files !!"

"Cannot merge parameters !!"

"Cannot export parameters !!"

KIT, Kurata Laboratory

43

E. SENSITIVITY AND STABILITY ANALYSIS BY S-SYSTEM
1. Objectives
Sensitivity analysis shows how a biochemical system responds to perturbations or uncertainties. Among many

methods for system analysis, the sensitivity and stability analysis is useful for characterizing the robustness of

mathematical models at a steady-state level, and allows one to determine which parameters have the most effect on

the dynamics, or which factors cause to the system to oscillate. S-system is employed to analyze the various

sensitivities and stability of the system at the steady state, because the use of S-system solves them in symbolic

form. In this module, ordinary differential equations such as TT, CMA, GMA, and MM are converted into S-system

to analyze the sensitivities and stability.

2. Introduction of S-system
We show how S-system is derived from ordinary differential equations, and how the stability and sensitivity are

defined at the steady state.

2.1 S-system conversion
Ordinary differential equations are divided into the positive terms and negative terms:

−+ −= ii
i VV

dt
dX

 , (i = 1,....,n,....n+m) (E1),

where +
iV is the sum of positive terms, and −

iV is the sum of negative terms. Generally, S-system is given by:

∏∏
+

=

+

=

−=
mn

j

h
ji

mn

j

g
ji

i ijij XX
dt

dX

11

βα (E2),

where X1,…, Xn are the dependent variables, whose values vary with time, and Xn+1,…,Xn+m are the independent

variables, whose values are fixed as constants. When the concentrations of the dependent variables are given at the

steady state, the coefficients (gij, hij, αi, βi) of S-system are solved from Eq. (E2) in symbolic form:

i j
ij

j i

V X
g

X V

+

+

∂
=
∂

　 (E3)

i j
ij

j i

V X
h

X V

−

−

∂
=
∂

 (E4)

1

ij

i
i n m

g
j

j

V

X

+

+

=

=

∏
α (E5)

KIT, Kurata Laboratory

44

1

ij

i
i n m

h
j

j

V

X

−

+

=

=

∏
β (E6),

where gij and hij are the kinetic order and αi and βi are the rate constants. At the steady state:

0=
dt

dX i ,

we can take logarithms on both sides of Eq. (E2), the equation reduces to a linear equation:

∑∑
+

=

+

=

+=+
mn

j
jiji

mn

j
jiji XhXg

11

lnlnlnln βα ,

or

∑∑
+

+==

−−=−
mn

nj
jijij

i

i
n

j
jijij XhgXhg

11

ln)(lnln)(
α

β
 (E7).

Substituting i
i

i
jj byX ==

α

β
ln,ln . The equations (E7) is changed to the vector-matrix expression:

I
yHGbyHG IIDDD
rrr)()(−−=− (E8).

We substitute the matrixes as follows,

 IIIDDD AHGAHG =−=− , (E9)

to obtain the equation:

I
yAbyA IDD
rrr

−= (E10),

where AD is the coefficient matrix of the kinetic order regarding dependent variables, AI is the coefficient matrix of

the kinetic order regarding independent variables, Dyr is the solution vector of dependent variables, Iyr is the

vector of independent variables, and b
r

 is the vector regarding the rate constants. Consequently, the vector of the
dependent variables is symbolically solved as:

I
yAAbAy IDDD
rrr 11 −− −= (E11).

2.2 Sensitivity analysis
We define five types of gains and sensitivities. Here we explain the mathematical definition of them.

2.2.1. Logarithmic gain of a metabolite

In order to answer the question of how a relative change in an independent variable affect the steady-state

concentration of a metabolite, the logarithmic gain of a metabolite),(ID XXL
rr

 is defined in terms of the

coefficient matrixes 1−
DA and IA as:

IDID AAXXL 1),(−−=
rr

 (E12).

KIT, Kurata Laboratory

45

2.2.2. Logarithmic gain of a flux

In order to answer the question of how a relative change in a flux affect the steady-state concentration of a

metabolite, the logarithmic gain of a flux),(ID XVL
rr

 is defined in terms of the coefficient matrices 1−
DA

and IA as:

),(),(IDDII XXLGGXVL
rrrr

+=+ (E13).

2.2.3. Sensitivity with respect to a rate constant

In order to answer the question of how a relative change in a rate constant affect the steady state concentration of a

metabolite, we solve the sensitivity with respect to rate constants, which is defined as:

j

i
ji

XXS
α∂

∂
−=α

ln
ln

),((E14),

and

j

i
ji

X
XS

β∂
∂

−=β
ln
ln

),((E15).

These sensitivities are expressed using vectors and matrixes as:

1(,)D DS X A−= −
r r

α (E16),

1),(−= DD AXS β
rr

 (E17).

2.2.4. Sensitivity of dependent variables with respect to a kinetic order

In order to answer the question of how a relative change in a kinetic order affect the steady-state concentration of a

metabolite, we define the sensitivity with respect to the kinetic order as follows,

ij

i
iji g

X
gXS

ln
ln

),(
∂
∂

−= (E18),

ij

i
iji h

X
hXS

ln
ln

),(
∂
∂

−= (E19).

The partial derivatives of Eq. (E8) regarding gij are provided by:

0
gg ijij

=
∂
∂

+
∂
∂ D

DD
D y

Ay
A r

r
, (E20)

or

D
D

D
D y

A
A

y r
r

ij

1

ij gg ∂
∂

−=
∂
∂ − . (E21).

Therefore,

KIT, Kurata Laboratory

46

D
D

D
D

D y
A

A
y

XS r
rr

ij

1
ij

ij
ijij g

g
g

g)g,(
∂
∂

−=
∂
∂

= − (E22)

D
D

D
D

D y
A

A
y

XS r
rr

ij

1
ij

ij
ijij h

h
h

h)h,(
∂
∂

−=
∂
∂

= − (E23).

2.2.5. Sensitivity of a flux to a rate constant

In order to answer the question of how a relative change in a rate constant affect the steady-state concentration of a

flux, we define the sensitivity with respect to a rate constant. We take logarithms in the first term of the right hand

side of S-system:

∑
+

=

+=
mn

k
klkll XgV

1
lnlnln α (E24)

Here, we differentiate to both side regarding lnαi to obtain:

∑
=

+=
n

k
klkll XSgVS

1
iii),(),(αδα (E25)

In analogy, partial derivatives of Eq.(E25) with respect to lnβi give:

∑
=

=
n

k
klkl XSgVS

1
ii),(),(ββ (E26).

2.2.6. Sensitivity of a flux with respect to a kinetic order

In order to answer the question of how a relative change in a kinetic order affect the steady-state concentration of a

flux, we define the sensitivity with respect to a kinetic order. The partial derivatives of Eq. (E24) with respect of ln

gij are provided as:

∑
=

+=
n

k
ijklkjijill gXSgXgVS

1
ij),(ln)g,(δ (E27).

In analogy, the partial derivatives of Eq. (E24) with respect of ln hij are provided as:

∑
=

+=
n

k
ijklkjijill hXShXhVS

1
ij),(ln)h,(δ (E28).

2.3 Stability analysis
Defining the equation:

 δXk = Xk － XkS (XkS steady state),

we apply the first order approximation to Eq. (E2) to obtain:

k

n

k
XX

k

mn

j

h
jiik

k

n

k
XX

k

mn

j

g
jiik

i X
X

Xh
X

X

Xg
X

kSk

ij

kSk

ij

δ

β

δ

α

δ ∑
∏

∑
∏

=
=

+

=

=
=

+

= −=
1

1

1

1& (E29),

or

k

n

k kS

iSik
k

n

k kS

iSik
i X

X
VhX

X
VgX δδδ ∑∑

=

−

=

+

−=
11

& (E30),

KIT, Kurata Laboratory

47

As −+ = iSiS VV , we define:

kS

iS

kS

iS
ik X

V
X
Vf

−+

== (E31)

to deduce to:

k

n

k
ikikiki XfhgX δδ ∑

=

−=
1

)(& (E32).

Stability at the steady state is investigated by solving the eigenvalues of the coefficient matrix consisting of:

ikikik fhg)(− (E33).

3 Process flow
Figure D1 shows the whole processes of the simulator, where the process flow of S-system mainly consists of three

parts:

1) creation of the S-system coefficient file, which consists of the kinetic orders and rate constants that are solved in

symbolic form at the steady state,

2) creation of the S-system parameter file (the coefficients and steady-state concentrations) necessary for

sensitivity/stability analysis, which is made using the S-system coefficient function and the steady state

concentrations.

3) simulation of S-system.

The checkdae module carries out the process of 1), following that the user function for ordinary differential

equations (TT, CMA, GMA, MM) are generated. However, the checkdae module does not convert the differential

and algebraic equations (DAEs), because they cannot be converted into S-system directly. The checkdae module

carries out the analysis of the sensitivities and stability of S-system by linking the S-system coefficient function to

the steady-state concentrations. The concentrations at the steady state must be solved before this analysis.

KIT, Kurata Laboratory

48

DAEs
(checkdae file)

Edited DAEs

Parameters

User Fucntion

Steady state
anaylis

Dynaics

S-system
user function

S-system
parameters

Sensitivity/stabil
ity results

S-system
dynamics/steady state

analysis

File

S-system coefficient
function

 Edition

Fig. E1 Process flow for S-system analysis

parsedae

checkdae

solver

Sensitivity/stability analysis
S-system paremters

Solver

process

KIT, Kurata Laboratory

49

4 Function
4.1 Creation of S-system parameter file
Following calculating the coefficients of S-system, the S-system parameter file is created. The S-system parameters

provide the values of the coefficients at the steady state for the S-system user function.

4.2 Sensitivity analysis
The coefficient matrix of S-system is created to solve the various kinds of the sensitivities.

4.3 Stability analysis
After the coefficient matrix of the system is created, the eigenvalues of the matrix are calculated by the Hessenberg

QR method.

5 Input/Output Specification

5.1 Input specification
The input files necessary for calculating the sensitivity and stability are the S-system user function that has been

obtained at the steady state, and the S-system parameter file. The S-system parameter file is as follows,

Model ################
N_VAR ; 3; # num of variables(all)
N_ALGEBR; 0; # num of variables(all)

#Y_START ; index; initial_value; tag #comment
Y_START ; 1; 6.7000e-02; X1 #
Y_START ; 2; 4.6501e-01; X2 #
Y_START ; 3; 1.5000e-01; X3 #

#PARAM;name;index;val;val_start;num_survey;D/R/S;change-val;GA_min;GA_max;tag #comment
PARAM ;constantPlayer; 1; 1.0000e+01;;0;D;;;; X4 #
PARAM ;constantPlayer; 2; 5.0000e+00;;0;D;;;; X5 #
PARAM ;constantPlayer; 3; 3.0000e+00;;0;D;;;; X6 #
PARAM ;constantPlayer; 4; 4.0000e+01;;0;D;;;; X7 #
PARAM ;constantPlayer; 5; 1.3600e+02;;0;D;;;; X8 #
PARAM ;constantPlayer; 6; 2.8600e+00;;0;D;;;; X9 #
PARAM ;constantPlayer; 7; 4.0000e+00;;0;D;;;; X10 #
PARAM ;kplus ; 1; 7.7884e-02;;0;D;;;; alpha_1 #
PARAM ;kplus ; 2; 5.8501e-01;;0;D;;;; alpha_2 #
PARAM ;kplus ; 3; 7.9346e-04;;0;D;;;; alpha_3 #
PARAM ;kminus ; 1; 1.0627e+00;;0;D;;;; beta_1 #
PARAM ;kminus ; 2; 7.9346e-04;;0;D;;;; beta_2 #
PARAM ;kminus ; 3; 1.0588e+00;;0;D;;;; beta_3 #
PARAM ;g ; 1; 6.6000e-01;;0;D;;;; gi_1_1 #
PARAM ;g ; 2; 1.0000e+00;;0;D;;;; gi_1_3 #
PARAM ;g ; 3; 9.5000e-01;;0;D;;;; gd_2_1 #
 ---omission---
PARAM ;h ; 5; -3.0600e+00;;0;D;;;; hd_2_3 #
PARAM ;h ; 6; 1.0000e+00;;0;D;;;; hi_2_5 #
PARAM ;h ; 7; 3.0000e-01;;0;D;;;; hd_3_3 #
PARAM ;h ; 8; 1.0000e+00;;0;D;;;; hi_3_6 #

#T_EVENT ; name; index; time; value; #comment

######## Don't edit the following lines. ######
PARAM_NAME ;constantPlayer #
PARAM_NAME ;kplus #
PARAM_NAME ;kminus #

KIT, Kurata Laboratory

50

PARAM_NAME ;g #
PARAM_NAME ;h #

5.2 Output specification

Following the analytical solution, the various sensitivities and stability are provided as follows.

Fri Mar 28 16:14:40 2003 #####

Logarithmic Gains and Sensitivities.

The following data is the things when calculating STD.
Fri Mar 28 16:14:39 2003 #####

Solver No. : 11
Param Survey : 0
NR_TRIAL : 20
NR_TOL_F : 1.000E-15
NR_TOL_X : 1.000E-15
---omission---
h[8] = 1.0000e+00 #hi_3_6

Below this line is as a result of sensitivity analysis etc.

$ Fluxes $
index, y value , Flux
 1, 6.700e-02, 1.068e+00, #X1
 2, 4.650e-01, 1.714e+00, #X2
 3, 1.500e-01, 1.714e+00, #X3

$ Eigenvalues $
No. , Real , Imaginary
 1, -2.508e+01, 0.000e+00
 2, -1.037e+00, 0.000e+00
 3, -5.281e+01, 0.000e+00

$ Logarythmic Gains of Metabolites $
param/var , y[1], y[2], y[3]
constantPlayer[1], 8.283e-01, 1.029e+00, 1.216e+00
constantPlayer[2], 3.100e-01, 8.038e-01, 9.497e-01
constantPlayer[3], 1.255e+00, 1.560e+00, 1.843e+00
constantPlayer[4], -6.545e-01, -2.298e-03, -2.716e-03
constantPlayer[5], -8.648e-02, -2.243e-01, 3.264e-02
constantPlayer[6], -8.821e-01, -2.288e+00, -3.000e+00
constantPlayer[7], 3.681e-01, 9.545e-01, 1.128e+00

$ Sensitivities of Metabolites with respect to rate constants $
param/var , y[1], y[2], y[3]
 alpha[1], 1.255e+00, 1.560e+00, 1.843e+00
 alpha[2], 9.686e-01, 2.512e+00, 2.968e+00
 alpha[3], 8.821e-01, 2.288e+00, 3.000e+00

$ Sensitivities of Metabolites with respect to kinetic orders $
param/var , y[1], y[2], y[3]
 g[1], 1.907e+00, 2.370e+00, 2.800e+00
 g[2], 1.379e+00, 1.713e+00, 2.024e+00
- - - - - omission - - - - -
 h[7], 5.020e-01, 1.302e+00, 1.708e+00
 h[8], -9.269e-01, -2.404e+00, -3.153e+00

$ Logarythmic Gains of Fluxes $
param/flux , v[1], v[2], v[3]

KIT, Kurata Laboratory

51

constantPlayer[1], 6.600e-01, 3.649e-01, 3.649e-01
constantPlayer[2], 0.000e+00, 2.849e-01, 2.849e-01
constantPlayer[3], 1.000e+00, 5.528e-01, 5.528e-01
constantPlayer[4], 0.000e+00, -8.147e-04, -8.147e-04
constantPlayer[5], 0.000e+00, 9.791e-03, 9.791e-03
constantPlayer[6], 0.000e+00, 9.987e-02, 9.987e-02
constantPlayer[7], 0.000e+00, 3.383e-01, 3.383e-01

$ Sensitivities of Fluxes with respect to rate constants $
param/var , v[1], v[2], v[3]
 alpha[1], 1.000e+00, 5.528e-01, 5.528e-01
 alpha[2], 0.000e+00, 8.903e-01, 8.903e-01
 alpha[3], 0.000e+00, -9.987e-02, 9.001e-01

$ Sensitivities of Fluxes with respect to kinetic orders $
param/var , v[1], v[2], v[3]
 g[1], 1.520e+00, 8.401e-01, 8.401e-01
 g[2], 1.099e+00, 6.073e-01, 6.073e-01
 g[3], 0.000e+00, -2.286e+00, -2.286e+00
 g[4], 0.000e+00, 2.795e-01, 2.795e-01
- - - - - omission - - - - -
 h[6], -3.170e-16, 5.387e-01, -4.374e+00
 h[7], -1.545e-17, -5.684e-02, -5.684e-02
 h[8], 2.851e-17, 1.049e-01, 1.049e-01

KIT, Kurata Laboratory

52

F. OPTIMIZER (GA)
1. Introduction
The Genetic Algorithms (GAs) are known as one of the algorithms that can seek out the global minimum. GA is

based on the heuristic assumptions that the best solution will be found in the regions of the parameter space

containing a relatively high proportion of good solutions and that these regions can be explored by the genetic

operators of selection, crossover, and mutation. GA offers a number of advantages, e.g., GA searches form a set of

designs, and can explore the parameter space without trapping in local optima. However, this method has the

disadvantage that the computational cost of many runs for the design code is considerably large, and there have

been many parameters regarding the operations to determine with experiences and intuitions. In order to execute

GAs efficiently and systematically, we have developed the search modules The algorithms suitable for optimizing

biochemical networks are presented so that users can make a efficient strategy for the parameter search. This search

can be readily carried out on parallel computers.

2. Function specification and application problems

2.1 Function Specification
Algorithm

- Encode method

 -Real-coded GA (RGA)

 -Bit-string GA (BGA)

-Binary coding

-Gray coding

- GA type [RGA, BGA]

 -Distributed GA

 -Distributed and Integrated GA

-Generation alternation [RGA, BGA]

 -Elite conservation strategy (Normal)

 -Minimal Generation Gap (MGG)

-Selection method: Roulette, Tournament, Random.

- Crossover

 -BLX (Blend Crossover)[RGA]

 -UNDX (Unimodal Normal Distribution crossover) [RGA]

 -UNDXm (Multi-parental Unimodal Normal Distribution crossover) [RGA]

 -SPX (Symplex crossover)[RGA]

 -n-point crossover [BGA]

- Mutation

 -Uniform mutation within region [RGA]

KIT, Kurata Laboratory

53

 -Uniform mutation with fixed width [RGA]

 -Normal mutation with fixed width [RGA]

 -Uniform mutation with variable width [RGA]

 -Normal mutation with variable width [RGA]

 -Bit reverse mutation [BGA]

Input files and data for GAs

- GA-parameter setting file

- GA-population setting file

- parameter file (created by the checkdae module)

- parameter-range setting file

- Fitness function

Output file and data

Parameters for executing GAs (standard output, output file)

Information regarding the best individual of each generation (standard output)

Information regarding the whole individuals every generation (output file)

2.2 Application problem
This search engine module can be applied to a maximization problem that defines a fitness function by using

continuous and independent variables with the limited ranges.

Exceptionally, this search engine can be applied to the optimization of discrete problems such as a knapsack

problem. In the bit string GA for which the range of variables is set [0, 1] and the quantization number is 1, the

variables are determined either 0 or 1.

Note that the range is closed.

3. Execution of programs

Execution on a command line

% load module <arguments>

Arguments:

-r [parameter-range setting file] or –I [parameter file] (required)

-p [GA-parameter setting file] (required)

-s [GA-population setting file] (option)

-f [Output file]

-h Show help.

 The parameter file is exactly the same as the parameter file that the CADLIVE Simulator creates. If users employ

the parameter file to determine the regions of the parameters, the parameter-range setting file is not required.

KIT, Kurata Laboratory

54

Examples:

(1)

%load_module_name –r domain.dat -p param.dat -f output.dat -s init.dat

(2)

%load_module_name -h

For MPI,

(3)

%mpirun –np <number of process> <load module name> <arguments>

%mpirun –np 3 <load module name> –r domain.dat -p param.dat -f output.dat

For MPICH-G,

(4)

%mpirun –globusrsl <rsl file>

The "rsl" file is described in the manual of MPICH-G.

One process for one CPU is recommended.

How to connect the GA module to the CADLIVE Simulator

Users are able to connect the GA module to the CADLIVE Simulator, where the ranges of the parameters are

defined in the parameter file (parameter setting file). In order to use the parameter file as the input file for GA

modules, users have to edit the parameter file whose format is suitable for the GA module. The program is executed

as follows:

%load module name - I[parameter file] -p[GA parameter setting file] - f[GA result file].

The detailed instruction is described elsewhere.

4. Input/output specification

4.1 Parameter-range setting file
The closed ranges of the parameters are defined in the parameter-range setting file, and the number of the records is

the number of the parameters to search, as shown in the following box.

Format for a parameter range-setting file To maximum of 20 records.

lower value of range, upper value of range # comments

Format: Fields are sectioned by using comma (,). The preceded parts by # are comments.

KIT, Kurata Laboratory

55

For example, the ranges of three parameters are [-5.12,5.12], [-5.12, 0.0], [0.0, 3.14] as follows.

Example: parameter range-setting file

-5.12, 5.12 # x1

-5.12, 0.0 # x2

0.0, 3.14 # x3

4.2 GA-parameter setting file

4.2.1 GA-parameter setting file

The control parameters for GAs are classified by five key words: encode method, GA type, digenesis (generation

alternation), crossover, and mutation. The GA-parameter setting file is provided as follows.

Format of GA-parameter setting file

Key word; Alternatives; parameter_1; ****; parameter_n; # comments

The preceded parts by # are comments. The key words and alternatives are selected from the strings shown in Table

F1.

Table F1 Control parameters for setting GAs. Key words and their alternatives are selected. Upper and lower cases

are distinguished for defining the parameters. The program runs until the fitness becomes more than the value for

terminating a search. Both RGA and BGA can select the transparent alternatives. The thin gray alternatives can be

selected only by RGA, and the dark gray alternatives can be selected only by BGA.

Key word Alternatives Meaning
ENCODE REAL Real GA
(Encode method) BINARY Binary coding bit string type GA
 GRAY Gray coding bit string type GA
GATYPE DGA Distributed GA (island model)
(Island model) DIGA Distributed and Integrated GA
DIGENESIS NORMAL Normal generation
(Generation alternation) MGG MGG
CROSSOVER BLX Blend crossover
(Crossover method) UNDX Unimodal Normal Distribution crossover
 UNDXm Multi-parental Unimodal Normal Distribution crossover
 SPX Symplex crossover
 NPOINTS n-point crossover (BGA)
 NONE No crossover
MUTATION RegionUni Uniform mutation within region
(Mutation method) FixedUni Uniform mutation with fixed width
 FixedNormal Normal mutation with fixed width
 VariableUni Uniform mutation with variable width

KIT, Kurata Laboratory

56

 VariableNormal Normal mutation with variable width
 BitReverse Bit reverse mutation
 NONE None

Users can set the parameters with respect to each alternative in the following box.

Parameter description with respect to key words and alternatives.

ENCODE; REAL;

ENCODE; BINARY; quantization number;

ENCODE; GRAY; quantization number;

GATYPE; DGA; maximum generation number; value for terminating a search; number of islands; population

number within islands; immigration method; immigration interval; immigration rate;

(The final two parameters are required for immigration operation. Actually the above parameters must be on one

line.)

GATYPE; DIGA; maximum generation number; value for terminating a search; number of islands; population

number within islands; generation number for integration;

DIGENESIS; NORMAL; number of elites; rule for selection; tournament size (if tournament is employed);

DIGENESIS; MGG; number of children generated;

CROSSOVER; BLX; alpha;

CROSSOVER; UNDX; alpha; beta;

CROSSOVER; UNDXm; alpha; beta; m;

CROSSOVER; SPX; epsilon;

CROSSOCER; NPOINTS; n;

CROSSOVER; NONE;

MUTATION; FixedUni; mutation rate; width of parameter range;

MUTATION; FixedNormal; mutation rate; standard deviation;

MUTATION; VariableUni; mutation rate;

MUTATION; VariableNormal; mutation rate;

MUTATION; RegionUni; mutation rate;

MUTATION; BitReverse; mutation rate;

MUTATION; NONE;

In the bit-string GA, the real values are converted into the bit sequences by dividing the range of the variables with
n2 . The number of n that determines the resolution is named as the quantization number. A part of the parameters

for GA type, generation alternation, crossover, and mutation depends on the parameters of the encode methods. The

parameters for GA type, generation alternation, crossover, and mutation are independent mutually.

KIT, Kurata Laboratory

57

Table F2 Values that users are allowed to set with respect to each parameter. Note that the GA module can

distinguish the upper or lower cases of strings.

Parameter Values Default value

quantization number Integer ≥ 1 1
maximum generation number Integer ≥ 1 100
value for terminating a search real value (double type) -1.00E-10

number of islands Integer ≥ 1 3
population number within

islands
variable number +2 ≤ Integer

≤ Maximum 30

immigration switch ON, OFF ON
immigration interval Integer ≥ 1 3

immigration rate Real value [0,1] 1
generation for integration Integer ≥ 1 5

number of elites Integer ≥ 0 population number

selection rule Roulette, Tournament, Random Tournament

size of tournament 1 ≤ Integer ≤ (population number
of islands – number of parents +1) 2

number of children generated
by MGG

1 ≤ Integer ≤ Maximum

population
number of islands

alpha (BLX) Real value > 0 0.5
alpha (UNDX) Real value > 0 1

alpha (UNDXm) Real value > 0 1
beta (UNDX) Real value > 0 0.35

beta (UNDXm) Real value > 0 0.35

M 1 ≤ Integer ≤ number of
variables

max(1, the number of variables
-2)

epsilon Real value > 0 1/sqrt (number of variables
+2)

N Integer≥ 1 1
mutation rate Real value [0,1] 1/ number of variables

width Real value > 0 20
standard deviation Real value > 0 2

4.2.2 Examples for GA parameter setting file

Example 1:

Real GA

Distributed GA, To the maximum of 100, Value for terminating a search = 0, number of islands = 5, population

number within islands = 100, Immigration is ON, Immigration internal = 10, Immigration rate = 0.25, MGG,

children = 10, UNDX, parameter defaults, No mutation is applied.

example 1

ENCODE; REAL;

GATYPE; DGA; 100; 0; 5; 100; ON; 10; 0.25;

DIGENESIS; MGG; 10;

KIT, Kurata Laboratory

58

CROSSOVER; UNDX; ; ;
MUTATION; NONE;

Example 2

Binary coding bit-string GA, Quantization number = 10, Distributed and integrated GA, maximum generation 200,

value for completing execution = 0, number of island = 3, population number within island = 30, generation number

for integration = 20, Normal generation alternation, number of elites = 5, Roulette selection, Two-point crossover,

Bit-reverse mutation, mutation rate 0.3

example 2

ENCODE; BINARY; 10;

GATYPE; DIGA; 200; 0; 3; 30; 20;

DIGENESIS; Normal; 5; Roulette;

CROSSOVER; NPOINTS; 2;

MUTATION; BitReverse; 0.3;

4.2.3 GA-population setting file

The GA module is able to read the result file from the random search. In the n-dimensional parameter space to be

searched, the GA-population setting file is provided by:

Format for GA-population setting file

SearchID, fitness, parameter1,, , parameter_n

....................................

**

SearchID, fitness, parameter1,, , parameter_n

The symbol of "#" indicates that the line is comments. The section between islands is expressed by "**". Users

neither have to put "**" on the initial island nor under the final island. If such descriptions are employed, an empty

island is regarded to exist.

4.2.4 Examples for GA-population setting file

Three islands have five individuals, respectively

island No1

No0-67,-0.304018,0.915873,3.28519

No0-66,-9.88925,2.14165,1.47417

No0-43,-21.9843,2.8856,1.10932

No0-51,-25.6788,2.53911,1.00846

KIT, Kurata Laboratory

59

No0-5,-28.4887,0.792621,2.64166
** #island No2

No0-53,-3.04234,0.987835,2.93188

No0-41,-17.3451,1.64468,1.63063

No0-71,-23.0538,1.26285,1.99734

No0-40,-25.7664,1.81623,1.37769

No0-42,-29.2198,2.79655,1.15365

** #island No3

No0-10,-4.99208,0.972839,3.17752

No0-88,-17.9748,1.64134,1.6242

No0-44,-24.7664,1.06062,2.22619

No0-16,-27.1525,1.76528,1.33739

No0-6,-30.4514,1.33549,1.56515

4.3 Standard output
Before execution, the values of the parameters are displayed on the screen as follows.

===GA PARAMETERS======================

Encode Type : Real-coded GA

GA type : DGA

Max Generation : 1000

Fin value : -1.000000e-10

Total population : 1000

Number of islands : 10

Island population : 100

Digenesis type : NORMAL

Number of elites : 1

Selection type : Tournament

Tournament Size : 2

Crossover type : SPX

SPX(epsilon) : 2.645751

Mutation type : RegionUni

Mutation rate : 0.200000

KIT, Kurata Laboratory

60

Immigration type : Random ring
Immigration interval : 5

Immigration rate : 0.500000

===Searching space information==========

Number of Variable : 5

Domain variable[0] : [-5.120000, 5.120000]

Domain variable[1] : [-5.120000, 5.120000]

Domain variable[2] : [-5.120000, 5.120000]

Domain variable[3] : [-5.120000, 5.120000]

Domain variable[4] : [-5.120000, 5.120000]

==

A summary for the GA-population setting file is displayed, which includes the file name, the island numbers, the

population number within each island, the number of short islands, and the number of redundant islands. In the case

of the short islands, the program generates a new island with a random population automatically. When the number

of islands is larger than the appointed one, the number of the redundant islands is displayed.

===Initial Generation File==============

File name:rs_out_list

Island, Population, # of read, Random, Redundant

Island[0], 15, 20, 0, 5

Island[1], 15, 19, 0, 4

Island[2], 15, 5, 10, 0

Island[3], 15, 31, 0, 16

Island[4], 15, 11, 4, 0

Number of redundant islands: 2 # displayed when redundant islands exist.

==

The information regarding the best individual is displayed every generation on the screen. After completing the

search, the result is displayed. The bit-string GA indicates the real value sequences, not the bit sequences.

Indication of results every generation:

generation[0], Obtain: 0, Fitness: -26.652798, Gene: (-1.982981, -4.013446, 0.087129, -1.089640, 0.110301)

generation[1], Obtain: 1, Fitness: -22.533149, Gene: (-0.890659, -1.025080, -2.211625, 0.958039, -1.936774)

generation[2], Obtain: 2, Fitness: -14.719590, Gene: (0.074704, -0.078463, -0.083288, 1.033160, -2.918250)

(omission)

(when the target fitness or the maximum generation number is achieved.)

******Search Result******

KIT, Kurata Laboratory

61

Best gene

Obtained Generation : 65

Fitness : -0.000000

Gene : (-0.000000, -0.000000, 0.000000, 0.000000, 0.000000)

4.4 Output file
The output file is appointed as an argument on a command line. The results regarding the entire individuals every

generation are written in the form of "csv".

generation,0

Best gene:

Obtained generation, fitness, variable[0], variable[1], variable[2], variable[3], variable[4]

0, -46.007195, -3.995016, -0.149753, 3.052604, 3.074872, -2.078418

ID, fitness, variable[0], variable[1], variable[2], variable[3], variable[4]

[0][0], -46.007195, -3.995016, -0.149753, 3.052604, 3.074872, -2.078418

[0][1], -65.409291, -2.949895, 4.444091, 1.857122, 1.830248, -1.036918

[0][2], -83.227264, 1.431177, 2.992203, 3.875130, 4.705202, 0.037506

(omission)

[1][7], -100.625396, -4.595544, 3.022847, -4.746842, -3.206425, -0.934593

[1][8], -110.044951, 2.700800, 4.610274, -0.096368, -4.767272, 1.675321

[1][9], -135.758812, 3.813671, -4.647205, -3.593073, -4.125371, 5.059261

The brackets [][] indicate [island number][individual number within islands]. The individuals within each island are

sorted according to the values of the fitness. A smaller number indicates a higher fitness.

5. Detailed specification of functions
5.1 Encode method
This optimization program presents the real-coded GA (RGA) and the bit-string GA (BGA) as the method that

encodes design variables. For the bit-string GAs, the binary coding or gray coding is employed as the method that

exchanges between integers and bit-string (0,1).

5.1.1 Bit-string GA

The bit-string GA encodes the design variables as the bit string that consists of 0 and 1. The bit-string GA divides

the range of variables into n2 regions, and assigns the integer of 12,,0 −nK for each region in a numerical

order, thereby converting the integer to the bit-string. Two encoding methods as follows:

z Binary coding: converting an integer by binary arithmetic.

z Gray coding: converting an integer with a binary code under the condition that the Haming distance between

two codes to continue is always kept 1. The Haming distance is defined as the number of the figures with

KIT, Kurata Laboratory

62

different values.

 Table F3 Binary and gray codes

Integer Binary code Gray code
0 000 000
1 001 001
2 010 010
3 011 011
4 100 110
5 101 111
6 110 101
7 111 100

5.1.2 Real GA

The real GAs employ the sequence of real values as the chromosome.

5.2 GA type
This module presents two types of GAs, the distributed GA (DGA, island model) and the distributed and integrated

GA (DIGA).

5.2.1 Distributed GA

The distributed GA divides the population into multiple islands. The individuals of each island evolve within the

island, and some individuals immigrate mutually among the islands. The immigration method can be selected from

random swap, random ring, and no immigration.

z Random swap: selecting immigrants randomly out of randomly selected islands under the given immigration

rate in order to exchange two individuals between the islands. The elites of each island are not allowed to

immigrate.

z Random ring: determining the destination of immigrants so that the way between the destination and origin of

the immigrants forms a ring. The elites of each island are not allowed to immigrate.

5.2.2 Distributed and integrated GA (DIGA)

The DIGA divides the population into multiple islands as well as DGA. Each island evolves independently until all

the islands are integrated to a new island at the generation number for integration. At their integration, the elites of

each island are gathered to the new one, and the remaining individuals are selected randomly. The DIGA is not

allowed to operate the immigration.

5.3 Generation alternation
The GA module presents two methods for generation alternation, the ordinary generation alternation method

(employing elite conservation method), and Minimal Generation Gap (MGG). The ordinary method is sometimes

called the simple GA, but such a name may cause users to misunderstand the methods. Here, we name the ordinary

KIT, Kurata Laboratory

63

generation alternation method.

5.3.1 Ordinary generation alternation method

The ordinary method replaces all the parents by children. Actually, the parents except the elites are replaced,

because the elite conservation strategy is employed. If users want to replace all the parents including the elites, set

“the number of elites” as zero.

 The roulette, tournament, and random selections are presented as the methods for selecting the parents to crossover.

The roulette is made based on the difference:

 (difference) = (fitness of an individual) – (the lowest fitness of the island).

5.3.2 Minimal Generation Gap (MGG)

The MGG is the most desirable model that can avoid early convergence and suppress evolutionary stagnation. The

procedure of MGG can be summarized in the following box.

1. Create an initial population randomly

2. Sample two individuals randomly without replacement from the population

3. Generate children from the selected parents and characterize them

4. Replace two individuals (parents) by the best individual and the roulette-selected individual, resulting in the next

generation.

The above method is the original MGG. Some crossover methods require more than two parents. Thus, the

crossover is defined by the rules:

z BLX-α, n -point mutation: The parents to replace are the same ones to crossover.

z UNDX, UNDX-m, SPX: Two parents to replace are selected randomly out of all the parents that have been

employed to generate children.

5.4 Crossover method
The crossover method to apply depends on the encoding methods, the bit-string GA (BGA) and the real GA (RGA).

In this section, [RGA] indicates that the crossover is available for RGA, [BGA] for BGA.

5.4.1 BLX-α [RGA]

The BLX is a simple algorithm among the real-coded GAs, but its performance is not guaranteed in the

variable-dependent functions.

||

)),max(,),(min(
21

2121

iii

iiiiii

ppI

IppIppuc

−=

+−= αα
,

where),,(),,,(22
1

211
1

1
nn pppp KK == pp are the parents,),,(1 ncc K=c is the child, and)(⋅u

represents the function that generates a uniform random number within the closed region of the parentheses.

KIT, Kurata Laboratory

64

5.4.2 UNDX / UNDX-m [RGA]

The UNDX-m has been proposed to improve a search performance on an optimization problem with poorly scale

coordinate systems. The UNDX-m generates offspring vector values by sampling values from the m-dimensional

space that the m+1 parents span around their middle point. The UNDX is the same as the UNDX-m at m = 1 except

some respects. The prototype algorithm of the UNDX-m in the n-dimensional parameter space is provided by:

(1) Select m +1 parents 11 ,, +mxx K randomly from the population.

(2) Let the center of mass of these parents

∑
+

=+
=

1

11
1 m

i

i

m
xp ,

and let the difference vector between
ix and p be pxd −= ii .

(3) Select another parent 2+mx from the population randomly
(4) Let D be the length of the component of pxd −= ++ 22 mm orthogonal to mdd ,,1 K .

(5) Let mn−ee ,,1 K be orthogonal bases of the subspace orthogonal to the vectors mdd ,,1 K .

(6) Generate the child cx by:

∑ ∑
=

−

=

++=
m

i

mn

i

i
i

i
i

c Dvw
1 1

edpx ,

where ii vw , are the random numbers that follow normal distributions),0(),,0(22
ηξ σσ NN , respectively. The

parameters, σξ and ση, are provided by:

βσασ ηξ 2
3

2
11,/

+
+

−
==

m
m

mn
m

where α= 1.0 and β= 0.35 are recommended.

The UNDX is carried out as follows:

(1) Select three parents 321 ,, xxx randomly.

(2) Let the center of mass of these parents:

2/)(21 xxx +=p ,

and let the difference vector 21 xxd −= .

(3) Let D to be the distance between the third parent 3x and the line connecting x1 to x2.
(4) Generate a child xc by the following equation:

∑
−

=

++=
1

1

n

i
ii

pc D edxx ηξ ,

where ξ and iη are the random numbers that follow normal distributions),0(2
ξσN and),0(2

ησN ,

respectively. The parameters, σξ and ση, are given by:

n/, βσασ ηξ ==

KIT, Kurata Laboratory

65

whereα = 0.5 and β= 0.35 are recommended.

Difference between UNDX and UNDX-m

The recommended value of α is a half of that of the UNDX-m, because the UNDX employs the difference vector

between the parents instead of the difference vector based on the center of mass. Actually, both are the same. On the

other hand, for the sub-search component, the UNDX-m provides:

1/ −= nβση at m = 1,

where the difference is indicated clearly between them.

Table F4 Difference between UNDX and UNDX-m
 Revision on sub-search component

UNDX ασξ = n/βση =

UNDX-m

m/ασξ =

)1/,1(
2
3

2
11

−=
+
+

−
= nm

m
m

mn
ββση

Note: Rank cancellation

In the UNDX-m, the space that the difference vectors span is the main search component, and the orthogonal

subspaces are the minor search components. If the difference vector sets that the main search component belongs to

have any dependent element, the dimension of the main search space is less than the number of the vectors that

span it, canceling the rank.

 When the rank is cancelled, the optimization module does not change the main search component, and lets the

minor search component to be the subspace orthogonal to the space (P) that independent vectors of the mains

search components span. The parameter D is set as the component of the vector 2+md orthogonal to the space (P).

5.4.3 SPX [RGA]

SPX generates offspring vector values by uniformly sampling values from the simplex formed by multiple parent

vectors.

(1) Seletct m+1 parents nPP
r

K
r

,,0 randomly from the population.

(2) Let the center of mass of the parents G
r

 be

∑
=

=
n

i
iPG

0

rr
.

(3) The vector kk Cx
rr , are determined as follows:

KIT, Kurata Laboratory

66

=+−
=

=

=−+=

−−−),1()(
)0(0

),,0()(

111 nkCxxr
kC

nkGPGx

kkkk
k

kk

K
rrr

r
r

K
rrrr ε

,

where ε is the extension coefficient (ε > 0), kr is provided by random uniform function:

)1,,0())1,0(()1/(1 −== + nkur k
k K .

The coefficient ε is provided by:

2+= nε
(4) The child is provided by

nn CxC
rrr

+=

5.4.4 N point crossover [BGA]

N points to crossover are selected at a chromosome randomly, and the parameters between the crossing points are

replaced alternately by the corresponding parameters of a parental chromosome.

5.5 Mutation method
The mutation methods to apply depend on BGA or RGA. In this section, the mutation method for RGA is explained.

The individuals that have been selected out of an island at a given mutation rate are mutated according to the

various methods, where),,(1 nxx K is the coordinate of an individual, and),,(1 nzz K is the coordinate that

shows the best individual in all of the individuals within the island.

5.5.1 Uniform mutation within the region [RGA]

The vector of the selected individual is changed under the uniform random distribution within the given region.

5.5.2 Uniform mutation with fixed width [RGA]

A mutated vector is given by the function:

),(wxwxu ii +− ,

which generates a uniform random number between wxi − and wxi + , where w is the width that users give

arbitrarily.

5.5.3 Normal mutation with fixed width [RGA]

A mutated vector is provided by the function:

),(wxwxu ii +− ,

which generates a normal random number between wxi − and wxi + , where w is the width that users give

arbitrarily. The coordinate of the mutated vector follows a normal distribution:

KIT, Kurata Laboratory

67

),(2sxN i ,

where s is the standard deviation that users can give arbitrarily.

5.5.4 Uniform mutation with variable width [RGA]

A mutated vector is provided by the function:

),(vivi wxwxu +− ,

which generates a uniform random number between vi wx − and vi wx + , where vw is given by:

|| iiv xzw −= .

5.5.5 Normal mutation with variable width [RGA]

A mutated vector is provided by the function:

),(wxwxu ii +− ,

which generates a normal random number between wxi − and wxi + , where w is the width that users give

arbitrarily. The coordinate of the generated vector follows a normal distribution:

),(2
vi sxN ,

where the standard deviation is || iiv xzs −= .

5.5.6 Bit reverse mutation [BGA]

A vector is mutated by reversing the bit according to the given mutation rate.

6. Flow chart
6.1 Single without MPI

+-main

 +-initialize parameters

 +-display the employed parameters

 +-generate the initial population and characterize the fitness

 +-if(ORDINARY)

 +-NormalExecute()

 +-for (final generation)

 +-if (DGA && immigration generation) immigrate

 +-if (DIGA && integration generation) integrate

 +-for (all the islands)

 +-for (non-elite individuals)

 +-select parents based on the crossover method

 +-generate children by crossover

 +-replace parents by children (except elites)

KIT, Kurata Laboratory

68

 +-for (non-elite individuals) mutate

 +-characterize the fitness of non-elites

 +-sort the individuals according to their fitness

 +-conserve the best individual of all the islands

 +-if (termination condition) break;

+-display the results

 +-else if (MGG)

 +-MGGExecute()

 +-for(final generation)

 +-if (DGA && immigration generation) immigrate

 +-if (DIGA && integration generation) integrate

 +-for (all the islands)

 +-sampling parents without replacement

 +-generate a specific number of children

 +-characterize the fitness of children

 +-select the best individual and another by roulette selection

 +-replace parents by children

 +-conserve the best individual of all the islands

 +-if (termination condition) break;

 +-display the results

6.2 MPI
6.2.1 Master-slave model

This optimization module presents a master-slave model for parallel computing, where the master manages the

whole processes and send jobs to the slaves. Concretely speaking, the master manages the whole population, and

displays the results. On the other hand, the slaves execute the evolution within the islands.

Master:

 Generating the whole population

 Sending jobs to slaves.

The queue manages jobs and asks the slave that has terminated the task to do another job

 Managing immigration or integration

 Displaying the results

Slaves:

 Independently processing a job

 Crossovering and mutating chromosomes

 Characterizing the fitness and sorting the individuals.

KIT, Kurata Laboratory

69

The speed of parallel computation mainly depends on the grain of calculation provided for each CPU. The small

grain increases the overhead of communication, resulting in decreasing the advantage of parallel computation.

Delivering a job to a slave by an island unit increases the grain of calculation. The calculation rate of a simple

parallel system is limited by the slowest CPU. By contrast, the use of the master-slave model loads many jobs to the

CPU with high-performance, thus the calculation rate is enhanced more than the simple parallel system.

 The master-salve model is shown in the following diagram.

Island IslandIslandIslandIsland

Master
delivering a job (Island) to a slave

operating immigration
output the results

Slave
crossover
muataton

fitness calculation
sort

Slave
crossover
muataton

fitness calculation
sort

1 132
1. ask a job to slave

2. return to a signal

3. ask a new job to
the salve that returned
a signal

6.2.2 A flow char in MPI

+-main

 +-initialize MPI

 +-if (MASTER)

 +-input the GA parameter setting file and variable range setting file

 +-send the data on parameter and range to all the slaves

 +-display the employed parameters

 +-if (SLAVES)

 +-receive the data from the master

 +-register the data

 +-if (MASTER)

 +-generate the initial population of all the islands

 +-for (SLAVES)

 +-send the data of the initial population

 +-if (All the islands are sent) break;

 +-for (infinite loop)

KIT, Kurata Laboratory

70

 +-receive the response from a slave

 +-if (there is an island to send data) send the island to the slave

 +-if (All the islands are received) break;

 +-for (All the SLAVES) send the command to exit the loop

 +-if (SLAVE)

 +-for (infinite loop)

 +-receive data from the master

 +-if (Exiting the loop is commanded) break;

 +-characterize the fitness of all the individuals

 +-send the data to the master

 +-if (ORDINARY)

 +-normalExecute()

 +-if (MASTER)

 +-for (final generation)

 +-if (DGA && immigration generation) immigrate

 +-if (DIGA && integration generation) integrate

 +-for (All the SLAVES)

 +-send the data of all the islands

 +-if (All the islands are sent) break;

 +-for (infinite loop)

 +-receive the response from a slave

 +-if (there is a island to send)

 send the island to the slave

 +-if (all the islands are received) break;

 +-conserve the best of all the islands

 +-if (termination condition)

 +-send the command for exiting the loop, break;

 +-display the results

 +-if (SLAVE)

 +-for (infinite loop)

 +-receive the data from the master

 +-if (Exiting the loop is commanded) break;

 +-for (non-elite individuals)

 +-select parents based on the crossover method

 +-generate a child by crossover

 +-replace parents by children (except elites)

 +-for (non-elite individuals) mutate

 +-characterize the fitness of non-elites

KIT, Kurata Laboratory

71

 +-sort the individuals according to the fitness

 +-send data to the master

 +-else if (MGG) /* MGG */

 +-MGGExecute()

 +-if (MASTER)

 +-for (final generation)

 +-if (DGA && immigration generation) immigrate

 +-if (DIGA && integration generation) integrate

 +-for (All the SLAVES)

 +-send the population data of all the islands

 +-if (All the islands are sent) break;

 +-for (infinite loop)

 +-receive the response from a slave

 +-if (there is an island to send) send the island to the slave

 +-if (All the islands are received) break;

 +-conserve the best individual of all the islands

 +-if (termination condition) break;

 +-send the command for termination to the slaves,

 break;

 +-display the results

 +-if (SLAVE)

 +-for (infinite loop)

 +-receive the data from the master

 +-if (Termination is commanded) break;

 +-select parents randomly

 +-generate a specific number of children from parents

 +-characterize the fitness of children

 +-select the best individual and another by roulette selection

 +-replace parents by children

 +-if (Mutation)

 +-mutate

 +-characterize the fitness and sort

 +-send data to the master.

KIT, Kurata Laboratory

72

G. CLIENT-SERVER MODEL
The CADLIVE Simulator is a client-server model, supporting Internet Explorer. Users access a server through php,

and operate on Web pages. The system functions on LINUX (Red Hat Version 7.1), and employs Xerces2 Java
Parser for parsing the regulator-reaction equations in XML, postgreSQL for managing database, the C

programming language for calculating differential and algebraic equations and matrixes, and Message-Passing

Interface (MPI) for parallel computing.

