Supplementary file

List of Contents

- Modified Control Effective Flux (mCEF) algorithm
 Metabolic networks models

1 Modified Control Effective Flux (mCEF) algorithm

mCEF predicts the gene expression profile of genetically modified mutants where an enzyme coding gene is over-expressed (the relative enzyme activity ratio of a mutant versus wild type is > 1) or under-expressed (0 < enzyme activity ratio of mutant versus wild type < 1). Details of mCEF algorithm are described using a small metabolic network model.

The metabolic network model is shown in Figure S1. R6 is reversible reaction and the others are irreversible reactions. Ax, F and G are the external metabolites and the others are the internal metabolites.

Figure S1. A small metabolic network map. The formation of F (R8: $E \rightarrow F$) is the cellular function. Ax, F and G are the external metabolites.

The formation of F from E is regarded as a biological function. In a mutant the gene responsible for the reaction A \rightarrow C is 2-fold over-expressed, i.e., the relative enzyme activity parameter EAP of reaction 5 is set to 2.

There are four elementary modes (EMs) for the example network model. The fluxes could be decomposed onto EMs as follows:

$$\mathbf{v} = \mathbf{P} \bullet \boldsymbol{\lambda} = \begin{pmatrix} 1 & 6 & 6 & 3 \\ 0 & 3 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 1 & 0 & 0 & 3 \\ 0 & -2 & 0 & 1 \\ 1 & 6 & 0 & 0 \\ 1 & 6 & 0 & 0 \end{pmatrix} \bullet \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{pmatrix}$$

where v is the flux; P is the EM matrix; λ is the EM coefficient (EMC) vector.

The elements in an EM are normalized by the element of the substrate uptake reaction in each EM.

Reaction, <i>i</i>		Absolute element in the <i>j</i> -th EM $p_{i,j}$				
			1	2	3	4
1	R2	$2 \text{ A} \rightarrow \text{B}$	$\frac{1}{2}$	0	0	$\frac{1}{2}$
2	R3	$3 B \rightarrow 4 D$	1/6	0	0	1/6
3	R4	$2 D \rightarrow G$	0	$\frac{1}{3}$	0	$\frac{1}{3}$
4	R5	$A \rightarrow C$	0	1	1	0
5	R6	$3 C \rightarrow 2 D$	1/3	1/3	0	0
6	R7	$C \rightarrow E$	1	0	1	0
7	R8	$E \rightarrow F$	1	0	1	0

Table S1 EMs normalized by the substrate uptake reaction

The efficiency of each EM for the mutant is calculated by:

$$\varepsilon_{j,CELLOBJ}^{m} = \frac{p_{CELLOBJ,j} \cdot EA_{j}}{\sum_{i} \left(\left| p_{i,j} \right| \cdot \eta_{i} \right)}$$

 $\eta_i = \begin{cases} EAP_i & (if \text{ reaction } i \text{ is modified}) \\ 1 & (if \text{ reaction } i \text{ is not modified}) \end{cases}$

Table S2 Parameter η_i for each reaction

Reaction, <i>i</i>			η_i
1	R2	$2 \text{ A} \rightarrow \text{B}$	1
2	R3	3 B → 4 D	1
3	R4	$2 D \rightarrow G$	1
4	R5	$A \rightarrow C$	2
5	R6	$3 \text{ C} \rightarrow 2 \text{ D}$	1
6	R7	$C \rightarrow E$	1
7	R8	$E \rightarrow F$	1

$$EA_{j} = \prod_{i=1}^{n} ge_{i,j}$$

$$ge_{i,j} = \begin{cases} EAP_{i} & \text{(if the } i\text{-th reaction is involved in the } j\text{-th EM}) \\ 1 & \text{(if the } i\text{-th reaction is not involved in the } j\text{-th EM}) \end{cases}$$

Table S3 Parameter EA_i for each EM

The <i>j</i> -th EM	EA _i
1	1
2	2
3	2
4	1

$$mCEF_{i}(mut) = \sum_{CELLOBJ} \frac{1}{p_{CELLOBJ}^{max}} \frac{\sum_{j} \left(\varepsilon_{j,CELLOBJ}^{m} \cdot \left|p_{i,j}\right| \cdot \eta_{i}\right)}{\sum_{j} \varepsilon_{j,CELLOBJ}^{m}}$$

$$\varepsilon_{1,7} = \frac{1 \times 1}{\frac{1}{2} \times 1 + \frac{1}{6} \times 1 + 0 \times 1 + 0 \times 2 + \frac{1}{3} \times 1 + 1 \times 1 + 1 \times 1} = \frac{1}{3}$$

$$\varepsilon_{2,7} = \frac{0 \times 2}{0 \times 1 + 0 \times 1 + \frac{1}{3} \times 1 + 1 \times 2 + \frac{1}{3} \times 1 + 0 \times 1 + 0 \times 1} = 0$$

$$\varepsilon_{3,7} = \frac{1 \times 2}{0 \times 1 + 0 \times 1 + 0 \times 1 + 1 \times 2 + 0 \times 1 + 1 \times 1 + 1 \times 1} = \frac{1}{2}$$

$$\varepsilon_{4,7} = \frac{0 \times 1}{\frac{1}{2} \times 1 + \frac{1}{6} \times 1 + \frac{1}{3} \times 1 + 0 \times 2 + 0 \times 1 + 0 \times 1 + 0 \times 1} = 0$$

The mCEF for each reaction is calculated.

$$mCEF_{1}(mut) = \frac{1}{1} \cdot \frac{\frac{1}{3} \cdot (\frac{1}{2} \times 1) + 0 \cdot (0 \times 1) + \frac{1}{2} \cdot (0 \times 1) + 0 \cdot (\frac{1}{2} \times 1)}{(\frac{1}{3} + 0 + \frac{1}{2} + 0)} = \frac{1}{5}$$

$$mCEF_{2}(mut) = \frac{1}{1} \cdot \frac{\frac{1}{3} \cdot (\frac{1}{3} \times 1) + 0 \cdot (0 \times 1) + \frac{1}{2} \cdot (0 \times 1) + 0 \cdot (\frac{1}{3} \times 1)}{(\frac{1}{3} + 0 + \frac{1}{2} + 0)} = \frac{1}{15}$$

$$mCEF_{3}(mut) = \frac{1}{1} \cdot \frac{\frac{1}{3} \cdot (0 \times 1) + 0 \cdot (\frac{1}{3} \times 1) + \frac{1}{2} \cdot (0 \times 1) + 0 \cdot (\frac{1}{3} \times 1)}{(\frac{1}{3} + 0 + \frac{1}{2} + 0)} = 0$$

$$mCEF_{4}(mut) = \frac{1}{1} \cdot \frac{\frac{1}{3} \cdot (0 \times 2) + 0 \cdot (1 \times 2) + \frac{1}{2} \cdot (1 \times 2) + 0 \cdot (0 \times 2)}{(\frac{1}{3} + 0 + \frac{1}{2} + 0)} = \frac{6}{5}$$

$$mCEF_{5}(mut) = \frac{1}{1} \cdot \frac{\frac{1}{3} \cdot (\frac{1}{3} \times 1) + 0 \cdot (\frac{1}{3} \times 1) + \frac{1}{2} \cdot (0 \times 1) + 0 \cdot (0 \times 1)}{(\frac{1}{3} + 0 + \frac{1}{2} + 0)} = 1$$

$$mCEF_{6}(mut) = \frac{1}{1} \cdot \frac{\frac{1}{3} \cdot (1 \times 1) + 0 \cdot (0 \times 1) + \frac{1}{2} \cdot (1 \times 1) + 0 \cdot (0 \times 1)}{(\frac{1}{3} + 0 + \frac{1}{2} + 0)} = 1$$

The mCEFs of an over-expressing mutant are calculated below.

$$\Theta_i(w, mut) = \frac{mCEF_i(mut)}{mCEF_i(w)}$$

Reaction	n <i>i</i>		mCEF _i (w)	mCEF _i (mut)	$\Theta_{i}(w, m u t)$
1	R2	$2 \text{ A} \rightarrow \text{B}$	$\frac{1}{4}$	$\frac{1}{5}$	$\frac{4}{5}$
2	R3	3 B → 4 D	4	5 1	<u> </u>
			12	15	$\overline{5}$
3	R4	$2 D \rightarrow 3 F$	0	0	1
4	R5	$A \rightarrow C$	1	<u>6</u>	12
			2	5	5
5	R6	$3 \text{ C} \rightarrow 2 \text{ D}$	1	2	6
			$\overline{6}$	15	5
6	R7	$C \rightarrow E$	1	1	1
7	R8	$E \rightarrow F$	1	1	1

 Table S4 Values of mCEFs of an over-expressing mutant

2. Metabolic networks models
Table S5 Metabolic network model of Escherichia coli

Gene	Gene description	Reaction
ACEA	Isocitrate lyase	ICIT ==> SUCC + GLX
ACEB	Malase synthase A	ACCOA + GLX ==> MAL + COA
ACK	Acetate kinase	$ACTP + ADP \iff ATP + AC$
ACN	Aconitase	CIT <==> ICIT
ACXT	Acetate transport	$AC \Longrightarrow ACXT$
ADK	Adenylate kinase	$ATP + AMP \iff 2 ADP$
ATP	F0F1-ATPase	$PI + 4 HEXT + ADP \iff ATP$
ATPDRAIN	ATP drain	ATP ==> PI + ADP
CO ₂ XT	CO ₂ transport	$CO_2 \ll CO_2 XT$
CYO	Cytochrome oxidase bo3	$2 \text{ QH}_2 + \text{O}_2 ==> 2 \text{ Q} + 4 \text{ HEXT}$
EDA	6-phosphogluconate dehydratase	KetoPGluc ==> T3P1 + PYR
	2-keto-3-deoxy-6-phosphogluconate	
EDD	aldolase	D6PGC ==> KetoPGluc
ENO	Enolase	$P2G \iff PEP$
FBA	Fructose-1,6-bisphosphatase aldolase	$FDP \iff T3P1 + T3P2$
FBP	Fructose-1,6-bisphosphatase	$FDP \Longrightarrow F6P + PI$
FRD	Fumarate reductase	$FADH + FUM \Longrightarrow FAD + SUCC$
FUM	Fumarase	FUM <==> MAL
	Glyceraldehyde-3-phosphate	
GAP	dehydrogenase	$PI + T3P1 + NAD \iff P13DG + NADH$
GLCUP	uptake of glucose	$GLCXT \Longrightarrow GLC$
GLT	Citrate synthase	ACCOA + OA ==> COA + CIT
GND	6-phosphoglycononate dehydrogenase	$D6PGC + NADP ==> RL5P + CO_2 + NADPH$
GPM	Phosphoglycerate mutase	$P3G \iff P2G$
		0.1 F6P + 1.5 P3G + 3.7 ACCOA + 0.2 G6P + 41.3 ATP + 0.5 PEP + 1.1 AKG +
GROWTH	Growth	0.4 E4P + 18.2 NADPH + 1.8 OA + 0.9 R5P + 0.1 T3P1 + 3.5 NAD + 2.8 PYR
		==> 41.3 PI + 3.7 COA + 41.3 ADP + 3.5 NADH + 18.2 NADP + BIOMASS
ICD	Isocitrate dehydrogenase	$ICIT + NADP \iff AKG + CO_2 + NADPH$
LPD	lipoamide dehydrogenase	$COA + NAD + PYR \implies ACCOA + CO_2 + NADH$
MAEB	Malic enzyme (NADP)	$MAL + NADP ==> CO_2 + NADPH + PYR$

Gene	Gene description	Reaction
MDH	Malase dehydrogenase	$MAL + NAD \leq = OA + NADH$
NUO	NADH dehydrogenase	O + NADH ==> OH2 + 2 HEXT + NAD
O ₂ XT	Oxygen transport	$O_2 <==> O_2 XT$
PČK	Phosphoenolpyruvate carboxykinase	$ATP + OA \implies PEP + CO_2 + ADP$
PFK	Phosphofructokinase	F6P + ATP = ADP + FDP
PGI	Phosphoglucoisomerase	$G6P \iff F6P$
PGK	Phosphoglycerate kinase	$ADP + P13DG \iff P3G + ATP$
PGL	6-phosphoglyconolactonase	$D6PGL \Longrightarrow D6PGC$
PIXT	Inorganic phosphate transport	PI <==> PIXT
PNTA	Pyridine nucleotide transhydrogenase A	NADPH + NAD = NADH + NADP
PNTB	Pyridine nucleotide transhydrogenase B	$2 \text{ HEXT} + \text{NADH} + \text{NADP} \Longrightarrow \text{NADPH} + \text{NAD}$
PPC	Phosphoenolpyruvate carboxylase	PEP + CO2 ==> PI + OA
PPS	Phosphoenolpyruvate synthase	ATP + PYR = PI + PEP + AMP
РТА	Phosphotransacetylase	$ACCOA + PI \iff ACTP + COA$
PTS	Glucose transport	PEP + GLC ==> G6P + PYR
РҮК	Pyruvate kinase	PEP + ADP ==> ATP + PYR
RPE	Ribulose phosphate 3-epimerase	$RL5P \iff X5P$
RPI	Ribose-5-phosphate isomerase	$RL5P \iff R5P$
SDH	Succinate dehydrogenase	$FAD + SUCC \Longrightarrow FADH + FUM$
SDH2	Succinate dehydrogenase complex	$FADH + Q \iff FAD + QH2$
SUCAB	2-Ketoglutarase dehydragenase	$AKG + COA + NAD = OO_2 + SUCCOA + NADH$
SUCCD	Succinyl-CoA synthetase	$PI + ADP + SUCCOA \iff ATP + SUCC + COA$
TALB	Transaldolase B	$S7P + T3P1 \iff F6P + E4P$
TKTA	Transketolase I	X5P + R5P <==>S7P + T3P1
ТКТВ	Transketolase II	$X5P + E4P \iff F6P + T3P1$
TPI	Triosphosphate isomerase	$T3P1 \iff T3P2$
ZWF	Glucose-6-phosphate 1-dehydrogenase	$G6P + NADP \iff NADPH + D6PGL$

Abbreviations	Full name	Abbreviations	Full name
			2-Keto-3-desoxy-6-phospho
AC	Acetate	KetoPGluc	gluconate
ACCOA	Acetyl coenzyme A	MAL	malate
	5 5		Nicotinamide adenine
ACTP	Acetvl phosphate	NAD	dinucleotide
			Nicotinamide adenine
ACXT	external acetate	NADH	dinucleotide - reduced
			Nicotinamide adenine
ADP	Adenosine diphosphate	NADP	dinucleotide phosphate
			Nicotinamide adenine
			dinucleotide
AKG	alpha-Ketoglutarate	NADPH	nhosnhate-reduced
/ IRO	Adenosine		phosphate reduced
AMP	5'-mononhosphate	0	Oxygen
ΔΤΡ	A denosine triphosphate		External oxygen
BIOMASS	Biomass		ovaloacetate
DIOWIA55	Diomass	0A	3 Phospho D glyceroyl
CIT	Citrata	P12DC	s-rilospilo-D-giyceloyi
	Cillate Corbon dioxido		2 Dheamhealuserate
CO_2	carbon dioxide	P2O P2C	2-Phosphoglycerate
$CO_2 X I$		P3G DED	3-Phosphogrycerate
CUA D(DCC	Coenzyme A	PEP	Phosphoenolpyruvate
Dorge	6-Phospho-D-gluconate	PI	Phosphate
DADAT	D-Glucono-1,5-lactone	DIVE	
D6PGL	6-phosphate	PIXI	external phosphate
E4P	Erythrose-4-phosphate	PYR	Pyurvate
F6P	Fructose-6-phosphate	Q	Ubiquinone-8
FAD	Flavin adenine dinucleotide Flavin adenine	QH2	Ubiquinol-8
FADH	dinucleotide-reduced D-Fructose	R5P	ribose-5-phosphate
FDP	2,6-bisphosphate	RL5P	ribulose-5-phosphate
FUM	Fumarate	S7P	sedoheptulose-7-phosphate
G6P	Glucose-6-phosphate	SUCC	succinate
GLC	Glucose	SUCCOA	succinyl-coenzyme A
GLCXT	External glucose	T3P1	glyceraldehyde-3-phosphate
GLX	Glyoxylate	T3P2	dihydroxyacetate phosphate
HEXT	external hydrogen	X5P	xylulose-5-phosphate
ICIT	isocitrata	1101	ng ruiose o phosphute

Figure S2 Central network model of *E. coli*. Grey ones are external metabolites.

Gene	Gene description	Reaction
asp	Asparagine transaminase	$OAA + GLUT \iff ASP + AKG$
glt, acn,	Citrate synthase, Aconitase, isocitrate dehydrogenase	
icd		$OAA + ACCOA + H_2O + NADP \iff AKG + CO_2 + NADPH + COA$
tkt II	Transketolase II	E4P + XYL5P <==> GAP + FRU6P
sucCD	SUCCCoA synthase	$ADP + SUCCOA \iff ATP + COA + SUC$
	Glyceraldehyde-3-phosphate dehydrogenase,	
gap, pgk	Phosphoglycerate kinase	$GAP + ADP + NAD \iff ATP + G3P + NADH$
tal	Transaldolase	$SED7P + GAP \iff E4P + FRU6P$
glutDH	Glutamate dehydrogenase	$AKG + NH_3 + NADPH \leq = H_2O + NADP + GLUT$
ots	trehalose-6-phosphate synthase	ATP + 2 GLC6P <==> TREHAL + ADP
pgi	Phosphoglucoisomerase	GLC6P <==> FRU6P
rpi	Ribose-5-phosphate isomerase	RIBU5P <==> RIB5P
rpe	Ribulose phosphate 3-epimerase	RIBU5P <==> XYL5P
gpm, eno	Phosphoglycerate mutase, Enolase	$G3P \iff PEP + H_2O$
O ₂ ext	Oxygen uptake	$O_2 \iff O_2 XT$
tkt I	Transketolase I	RIB5P + XYL5P <==> SED7P + GAP
sucCD	SUCC-CoA synthase	$FAD + H2O + NAD + SUC \iff OAA + FADH + NADH$
Lysext	Lysine transport	LYSI ==> LYSIXT
pdh	Pyruvate dehydrogenase	$COA + NAD + PYR = ACCOA + CO_2 + NADH$
Treext	Trehalose transport	TREHAL ==> TREHALXT
sucAB	2-Ketoglutarase dehydragenase	$AKG + COA + NAD \implies CO_2 + SUCCOA + NADH$
pps, pyk	Phosphoenolpyruvate synthase, Pyruvate kinase	PEP + ADP ==> ATP + PYR
	Acetolactate synthase I, Acetohydroxy acid	
	isomeroreductase, Dihydroxy acid dehydratase,	
ilvBCDE	Branched chain amino acid aminotransferase	$NADPH + GLUT + 2 PYR = VAL + AKG + CO_2 + H_2O + NADP$
		332 ACCOA + 40 VAL + 3000 ATP + 80 ASP + 126 RIB5P + 33 LYSI
Growth	Biomass formation	+ 150 G3P + 52 PEP + 13 GAP + 100 NADPH + 54 ALA + 25 GLUM
Glowin	Diomass iormation	+ 7 FRU6P + 21 GLC6P + 446 GLUT + 30 PYR ==> 364 AKG + 143
		CO ₂ + 332 COA + 3000 ADP + 100 NADP + 1000 BIOMASS
ATP	ATP synthase	$4 \text{ ADP} + 2 \text{ NADH} + \text{O}_2 ==> 4 \text{ ATP} + 2 \text{ H}_2\text{O} + 2 \text{ NAD}$

 Table S7 Metabolic network model for Corynebacterium glutamicum

Table S7 (co	Fable S7 (continued)				
Gene	Gene description	Reaction			
alaTr	Alanine transaminase	GLUT + PYR ==> AKG + ALA			
ATPdrain	ATP drain	ATP ==> ADP			
Lys	Diaminopimelate decarboxylase	$MDAP \Longrightarrow LYSI + CO_2$			
FADHDH	FADH dehydrogenase	$2 \text{ FADH} + 2 \text{ ADP} + \text{O}_2 \Longrightarrow 2 \text{ ATP} + 2 \text{ FAD} + 2 \text{ H2O}$			
	Succinyl diaminopimelate aminotransferase,				
	Tetrahydrodipicolinate succinylase, Succinyl				
dapCEF	diaminopimelate desuccinylase	AKP + SUCCOA + H2O + GLUT ==> MDAP + AKG + COA + SUC			
fbp	Fructose-1,6-bisphosphatase	$H2O + FDP \Longrightarrow FRU6P$			
pts	Phosphotransferase system	PEP + GLC ==> GLC6P + PYR			
	Fructosebisphophaphate aldolase, Triosphosphate				
fba, tpi	isomerase	$FDP \Longrightarrow 2 GAP$			
CO ₂ ext	CO ₂ transport	$CO_2 \Longrightarrow CO_2 XT$			
ppc	Phosphoenolpyruvate carboxylase	$PEP + CO_2 ==> OAA$			
H ₂ Oext	Water transport	$H_2O \Longrightarrow H_2OXT$			
Thr, asd	Aspartate kinase, Aspartate semialdehyde	$ATP + ASP + 2 NADPH + PYR ==> AKP + ADP + H_2O + 2 NADP$			
GLCup	Glucose uptake	GLCXT ==> GLC			
Glum	Glutamine synthase	$ATP + NH_3 + GLUT ==> ADP + GLUM$			
pfk	Phosphofructokinase	ATP + FRU6P ==> ADP + FDP			
NH ₃ ext	Ammonia transport	$NH3XT ==> NH_3$			
Zwf, pgl,	Glucose-6-phosphate 1-dehydrogenase,	$H_2O + 2 \text{ NADP} + \text{GLC6P} \Longrightarrow CO_2 + 2 \text{ NADPH} + \text{RIBU5P}$			
gnd	6-phosphoglyconolactonase, 6-phosphoglycononate				
	dehydrogenase				

Abbreviations	Full name	Abbreviations	Full name
OAA	Oxaloacetic acid	SUCCOA	Succinyl -coenzyme A
FADH	Flavin adenine dinucleotide	H ₂ O	Water
	(reduced)		
ACCOA	Acetyl-coenzyme A	NADH	Nicotinamide adenine
			dinucleotide (reduced)
VAL	Valine	O ₂	Oxygen
ATP	Adenosine triphosphate	ALA	Alanine
ASP	Aspartate	NAD	Nicotinamide adenine
			dinucleotide (oxidized)
SED7P	Sedoheptulose-7-phosphate	GLUM	Glutamine
RIB5P	Ribose-5-phosphate	GLC	Glucose
LYSI	Lysine	NADP	Nicotinamide adenine
			dinucleotide phosphate
			(oxidized)
G3P	3-phosphoglycerate	FRU6P	Fructose-6-phosphate
АКР	2-Amino-6-ketopimelate	XYL5P	Xylulose-5-phosphate
PEP	Phosphoenolpyruvate	GLC6P	Glucose-6-phosphate
MDAP	meso-diaminopimelate	FDP	Fructose 2,6-bisphosphate
GAP	Glyceraldehyde-3-phosphate	GLUT	Glutamate
AKG	alpha-ketoglutarate	SUC	Succinate
E4P	Erythrose-4-phosphate	PYR	Pyruvate
TREHAL	Trehalose	LYSIXT	External lysine
NH3	Ammonia	O ₂ XT	External oxygen
FAD	Flavin adenine dinucleotide	CO ₂ XT	External carbon dioxide
	(oxidized)		
CO_2	Carbon dioxide	TREHALXT	External trehalose
NADPH	Nicotinamide adenine	BIOMASS	Biomass
	dinucleotide phosphate		
	(reduced)		
COA	Coenzyme A	H ₂ OXT	External Water
RIBU5P	Ribulose-5-phosphate	GLCXT	External glucose
ADP	Adenosine diphosphate	NH ₃ XT	External ammonia

Table S8 Metabolites in metabolic network models for Corynebacterium glutamicum

Figure S3 Central network model of C. glutamicum. Grey ones are external metabolites.

Mutant	FBA ^a	FBA ^b	MOMA	GMF
fbp	38.19	23.69	19.65	20.00
pps	35.31	20.66	10.78	9.97
rpe	32.65	34.84	11.64	9.20
tktA	38.44	40.82	15.17	14.12
tktB	21.01	23.25	4.78	4.68
fba	26.93	28.85	20.20	19.43
pgi	26.97	24.80	19.94	24.56
pgl	21.97	23.68	21.04	21.97
gnd	28.61	32.30	17.22	14.39

Table S9 Prediction errors for nine mutants of E. coli by FBA, MOMA and GMF

a: the objective function in FBA is the maximum biomass formation;

b: the objective function in FBA is the maximum ATP per flux unit (Schuetz *et al*, 2007); The metabolic fluxes for mutants were cited from the reference (Ishii, N. *et al.*, 2007)

FBA is performed by linprog in Matlab.

$$\min \sum_{i} c_i \mathbf{v}_i$$

subject to
$$\mathbf{S} \cdot \mathbf{v} = 0$$
 $v_{i,\min} \le v_i \le v_{i,\max} (i = 1,...,n)$

In the metabolic network models of *E. coli* and *C. glutamicum*, the reaction for biomass formation was presented. The coefficients of the objective function, c_i , are -1 for this biomass formation reaction while they are zero for other reactions.